最新函數(shù)的概念教師教學(xué)反思
時間:
志藝942由 分享
最新函數(shù)的概念教師教學(xué)反思
函數(shù)是研究現(xiàn)實世界變化規(guī)律的一個重要模型,對函數(shù)的學(xué)習一直以來都是中學(xué)階段的一個重要的內(nèi)容。下面是學(xué)習啦小編為大家收集的數(shù)學(xué)函數(shù)的概念教學(xué)反思,望大家喜歡。
數(shù)學(xué)函數(shù)的概念教學(xué)反思范文一
函數(shù)概念的引入一般有兩種方法,一種方法是先學(xué)習映射,再學(xué)習函數(shù);另一種方法是通過具體的實例,體會數(shù)集之間的一種特殊的對應(yīng)關(guān)系,即函數(shù)。為了充分運用學(xué)生已有的認知基礎(chǔ),為了給抽象概念以足夠的實例背景,以有助于學(xué)生理解函數(shù)概念的本質(zhì),我采用后一種方式,即從三個背景實例入手,在體會兩個變量之間依賴關(guān)系的基礎(chǔ)上,引導(dǎo)學(xué)生運用集合與對應(yīng)的語言刻畫函數(shù)概念。繼而,通過例題,思考、探究、練習中的問題從三個層次理解函數(shù)概念:函數(shù)定義、函數(shù)符號、函數(shù)三要素,并與初中定義進行對比。
在學(xué)習用集合與對應(yīng)的語言刻畫函數(shù)之前,還可以讓學(xué)生先復(fù)習初中學(xué)習過的函數(shù)概念,并用課件進行模擬實驗,畫出某一具體函數(shù)的圖像,在函數(shù)的圖像上任取一點P,測出點P的坐標,觀察點P 的坐標橫坐標與縱坐標的變化規(guī)律。使學(xué)生看到函數(shù)描述了變量之間的依賴關(guān)系,即無論點P在哪個位置,點P的橫坐標總對應(yīng)唯一的縱坐標。由此,使學(xué)生體會到,函數(shù)中的函數(shù)值的變化總是依賴于自變量的變化,而且由自變量唯一確定。
數(shù)學(xué)函數(shù)的概念教學(xué)反思范文二
函數(shù)是研究現(xiàn)實世界變化規(guī)律的一個重要模型,對函數(shù)的學(xué)習一直以來都是中學(xué)階段的一個重要的內(nèi)容。函數(shù)的概念是學(xué)習后續(xù)“函數(shù)知識”的最重要的基礎(chǔ)內(nèi)容,而函數(shù)的概念又是一個比較抽象的,對它的理解一直是一個教學(xué)難點,學(xué)生對這些問題的探索以及研究思路都是比較陌生的,因此,在教學(xué)過程中,注意通過對以前學(xué)過的“變量之間的關(guān)系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學(xué)生的學(xué)習興趣;并通過層層深入的問題設(shè)計,引導(dǎo)學(xué)生進行觀察、操作、交流、歸納等數(shù)學(xué)活動,在活動中歸納、概括出函數(shù)的概念;并通過師生交流、生生交流、辨析識別等加深學(xué)生對函數(shù)概念的理解。
函數(shù)是初中階段數(shù)學(xué)學(xué)習的一個重要內(nèi)容,學(xué)生又是第一次接觸函數(shù),充分考慮學(xué)生的接受能力,從生動有趣的問題情景出發(fā),通過對一般規(guī)律的探索過程,從實際問題中抽象出一次函數(shù)和正比例函數(shù)的概念.又通過具有豐富的現(xiàn)實背景的例題,進一步理解一次函數(shù)和正比例函數(shù)的概念,為下一步學(xué)習《一次函數(shù)圖像》奠定基礎(chǔ),并形成用函數(shù)觀點認識現(xiàn)實世界的能力與意識.
學(xué)生第一次利用數(shù)形結(jié)合的思想去研究一次函數(shù)的圖像,感到陌生是正常的.在教學(xué)過程中教師應(yīng)通過情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習興趣,對函數(shù)與圖像的對應(yīng)關(guān)系應(yīng)讓學(xué)生動手去實踐,去發(fā)現(xiàn),對一次函數(shù)的圖像是一條直線應(yīng)讓學(xué)生自己得出.在得出結(jié)論之后,讓學(xué)生能運用“兩點確定一條直線”,很快做出一次函數(shù)的圖像.在鞏固練習活動中,鼓勵學(xué)生積極思考,提高學(xué)生解決實際問題的能力.
根據(jù)學(xué)生狀況,教學(xué)設(shè)計也應(yīng)做出相應(yīng)的調(diào)整。如第一環(huán)節(jié):創(chuàng)設(shè)情境 引入課題,固然可以激發(fā)學(xué)生興趣,但也可能容 易讓學(xué)生關(guān)注與代數(shù)表達式的尋求,甚至隊部分學(xué)生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直切主題,如提出問題:一次函數(shù)的代數(shù)形式是y=kx+b,那么,一個一次函數(shù)對應(yīng)的圖形具有什么特征呢?今天我們就研究一次函數(shù)對應(yīng)的圖形特征—本節(jié)課是學(xué)生首次接觸利用數(shù)形結(jié)合的思想研究一次函數(shù)圖象和性質(zhì),對他們而言觀察對象、探索思路、研究方法都是陌生的,因而在教學(xué)過程中教師應(yīng)通過問題情境的創(chuàng)設(shè),激發(fā)學(xué)生的學(xué)習興趣,并注意通過有層次的問題串的精心設(shè)計,引導(dǎo)學(xué)生觀察一次函數(shù)的圖像,探討一次函數(shù)的簡單性質(zhì),逐步加深學(xué)生對一次函數(shù)及性質(zhì)的認識.在師生互動、生生互動的探索實踐活動中,促成學(xué)生對一次函數(shù)知識結(jié)構(gòu)的構(gòu)建和完善;在鞏固議練活動中,提高學(xué)生解決問題的能—本節(jié)課的重點是要學(xué)生了解正比例函數(shù)的確定需要一個條件,一次函數(shù)的確定需要兩個條件,能由條件利用待定系數(shù)法求出一些簡單的一次函數(shù)表達式,并能解決有關(guān)現(xiàn)實問題.本節(jié)課設(shè)計注重發(fā)展了學(xué)生的數(shù)形結(jié)合的思想方法及綜合分析解決問題的能力及應(yīng)用意識的培養(yǎng),為后繼學(xué)習打下基礎(chǔ).
探究的過程由淺入深,并利用了豐富的實際情景,既增加了學(xué)生學(xué)習的興趣,又讓學(xué)生深切體會到一次函數(shù)就在我們身邊,應(yīng)用非常廣泛.教學(xué)中注意到利用問題串的形式,層層遞進,逐步讓學(xué)生掌握求一次函數(shù)表達式的一般方法.教學(xué)中還注意到尊重學(xué)生的個體差異,使每個學(xué)生都學(xué)有所獲. 根據(jù)本班學(xué)生及教學(xué)情況可在教學(xué)過程中選擇下述內(nèi)容進行補充或拓展,也可留作課后作業(yè).本節(jié)課的重點是要學(xué)生了解正比例函數(shù)的確定需要一個條件,一次函數(shù)的確定需要兩個條件,能由條件利用待定系數(shù)法求出一些簡單的一次函數(shù)表達式,并能解決有關(guān)現(xiàn)實問題.本節(jié)課設(shè)計注重發(fā)展了學(xué)生的數(shù)形結(jié)合的思想方法及綜合分析解決問題的能力及應(yīng)用意識的培養(yǎng),為后繼學(xué)習打下基礎(chǔ).課設(shè)計注重發(fā)展了學(xué)生的數(shù)形結(jié)合的思想方法及綜合分析解決問題的能力及應(yīng)用意識的培養(yǎng),為后繼學(xué)習打下基礎(chǔ).探究的過程由淺入深,并利用了豐富的實際情本節(jié)課的重點是要學(xué)生了解正比例函數(shù)的確定需要一個探究的過程由淺入深,并利用了豐富的實際情本節(jié)課的重點是要學(xué)生了解正比例函數(shù)的確定需要一個條件,一次函數(shù)的確定需要兩個條件,能由條件利用待定系數(shù)法求出一些簡單的一次函數(shù)表達式,并能解決有關(guān)現(xiàn)實問題.本節(jié)課設(shè)計注重發(fā)展了學(xué)生的數(shù)形結(jié)合的思想方法及綜合分析解決問題的能力及應(yīng)用意識的培養(yǎng),為后繼學(xué)習打下基礎(chǔ).
數(shù)學(xué)函數(shù)的概念教學(xué)反思范文三
對于教師來說,'反思教學(xué)' 就是教師自覺地把自己的課堂教學(xué)實踐, 作為認識對象而進行全面而深入的冷靜思考和總結(jié),它是一種用來提高自身的業(yè)務(wù),改進教學(xué)實踐的學(xué)習方式,不斷對自己的教育實踐深入反思,積極探索與解決教育實踐中的一系列問題。進一步充實自己,優(yōu)化教學(xué),并使自己逐漸成長為一名稱職的人類靈魂工程師。以下是我在上了函數(shù)的概念之后的一點反思:
這堂課堂氣氛較為活躍。學(xué)生不僅能在課堂上勇于發(fā)言,而且還敢于質(zhì)疑并且能做到言之有理,還能積極參與小組討論交流,共同分享團隊協(xié)作的成果,基本完成教學(xué)目標。
這堂課是研究函數(shù)的概念。這節(jié)課主要采用了探索、發(fā)現(xiàn)、歸納、反饋的教學(xué)流程,達成了對函數(shù)的概念的教學(xué)。
函數(shù)性質(zhì)的研究是高中階段數(shù)學(xué)學(xué)習的一個重要組成部分,因此函數(shù)概念的學(xué)習是研究函數(shù)性質(zhì)時應(yīng)予以考查的一個重要方面,并且要在后續(xù)學(xué)習中體現(xiàn)這個性質(zhì)的應(yīng)用。它在計算函數(shù)值,討論函數(shù)單調(diào)性,繪制函數(shù)圖象均有用處,對學(xué)生來說這是一個新的概念。引進新概念的過程也是培養(yǎng)學(xué)生探索問題、發(fā)現(xiàn)規(guī)律、作出歸納的過程。因此在教學(xué)時沒有生硬地提出問題,而是采用生活中的事例引入,繼而引出數(shù)值在直角坐標系中的對應(yīng)關(guān)系導(dǎo)出新概念,不僅順乎自然而且為以后研究函數(shù)奇偶性的幾何意義(圖形對稱的兩條定理)埋下伏筆。
本堂課的一個亮點是反饋過程中給出幾個例題后所引起學(xué)生的思考、發(fā)言、爭執(zhí)、討論以至正確答案的達成一致的過程,其中教師起了很及時和恰當?shù)奶崾?。學(xué)生的勇于質(zhì)疑使課堂上呈現(xiàn)一派生氣勃勃的景象,學(xué)習積極性和主動性得到了充分調(diào)動,使學(xué)生對看似簡單的函數(shù)的概念也產(chǎn)生了不容輕視感,同時也發(fā)展了能力。一般來說學(xué)生在學(xué)習一些簡單的知識點時會覺得乏味,在組織教學(xué)時充分考慮了這些淺顯、平淡的知識還有一些值得思索和注意的地方。真正體現(xiàn)出“淺顯中有新意,平淡中有雋永”。
我上課的最大風格是注重將新概念講清講透,能在師生互動的過程中培養(yǎng)學(xué)生的探索能力和高度概括能力,并使學(xué)生舉一反三。難能可貴有同學(xué)能概括出的結(jié)論,因此可以以它作為下節(jié)課研究函數(shù)奇偶性的引入語。
總體來說,這堂課較好地使學(xué)生在學(xué)習中完成了“引起關(guān)注----激發(fā)熱情----參與體驗”的過程,是一堂比較成功的課。
遺憾之處是發(fā)言的學(xué)生由于受時間的約束,發(fā)言的人數(shù)和長度不夠理想。
(1)函數(shù)的概念,看起來比較簡單,學(xué)生學(xué)習時也往往感覺的乏味。因此,在組織教學(xué)時必須考慮到如何使學(xué)生感到這些淺顯、平淡的知識還有一些值得思索與注意的地方。
(2)根據(jù)學(xué)生的接受能力可將內(nèi)容安排兩節(jié)課的教學(xué)。
函數(shù)的概念教師教學(xué)反思 函數(shù)的概念教學(xué)反思相關(guān)文章:
1.高中數(shù)學(xué)函數(shù)概念教學(xué)反思
2.初中數(shù)學(xué)函數(shù)教師教學(xué)反思
3.八年級數(shù)學(xué)變量與函數(shù)教學(xué)反思