記憶初中數(shù)學(xué)知識(shí)的科學(xué)方法
記憶初中數(shù)學(xué)知識(shí)的科學(xué)方法
學(xué)習(xí)數(shù)學(xué),熟記公式、法則、定理,并且知道它們的來(lái)龍去脈,才能為熟練作題奠定良好的基礎(chǔ),也才談得上靈活運(yùn)用。你知道怎么蹦把這些公式定理記住嗎?下面由學(xué)習(xí)啦小編給你帶來(lái)關(guān)于記憶數(shù)學(xué)知識(shí)的科學(xué)方法,希望對(duì)你有幫助!
記憶初中數(shù)學(xué)知識(shí)的科學(xué)方法
理解記憶
理解的東西易于記住,對(duì)于數(shù)學(xué)知識(shí)特別需要通過(guò)理解,掌握它的邏輯體系進(jìn)行記憶。由于數(shù)學(xué)是建立在邏輯學(xué)基礎(chǔ)上的一門學(xué)科,它的概念、法則的建立、定理的論證、公式的推導(dǎo)等,無(wú)不處于一定的邏輯體系之中。因此,對(duì)于數(shù)學(xué)知識(shí)的理解和記憶,主要在于弄清數(shù)學(xué)知識(shí)的邏輯關(guān)系,把握它的來(lái)龍去脈。比如:初一數(shù)學(xué)中的同底數(shù)冪乘法、除法,冪的乘方,積的乘方的法則等記憶,就需要知道是如何推導(dǎo)出來(lái)的。對(duì)所學(xué)知識(shí)不僅要了解它是什么,更要知道是為什么,這樣印象才深,然后再有意識(shí)地進(jìn)行記憶,就容易記牢了。
系統(tǒng)記憶
有位成功者總結(jié)自己的經(jīng)驗(yàn)得出:“總結(jié)+消化=記憶”,這正是根據(jù)系統(tǒng)記憶法的思想總結(jié)出來(lái)的。因?yàn)橄到y(tǒng)記憶法就是按照數(shù)學(xué)知識(shí)的系統(tǒng)性,把知識(shí)進(jìn)行恰當(dāng)?shù)谋容^、分類、條理化,編織成網(wǎng),構(gòu)建知識(shí)結(jié)構(gòu)體系,這樣記住的就不是零星散亂的知識(shí),而是一整串。它往往采取列表比較的形式或抓住主線內(nèi)在聯(lián)系,把重要概念、公式和章節(jié)聯(lián)系起來(lái)串為一個(gè)整體。 在學(xué)習(xí)中,應(yīng)用系統(tǒng)記憶法來(lái)總結(jié),整理自己的知識(shí)系統(tǒng),對(duì)掌握知識(shí)大有裨益。
形象記
數(shù)學(xué)材料的抽象性會(huì)帶來(lái)記憶的困難。為了減少這種困難,可以將記憶的對(duì)象形象化,即把數(shù)學(xué)對(duì)象的意義和形象結(jié)合起來(lái)記憶。記憶幾何圖形,可以聯(lián)系日常生活中的形象來(lái)記憶,記憶某些數(shù)量關(guān)系和函數(shù)關(guān)系又可以借助于幾何圖形的直觀輔助形數(shù)結(jié)合起來(lái)記憶。比如初一的同位角、內(nèi)錯(cuò)角、同旁內(nèi)角形如倒寫(xiě)的英文字母“F”、反寫(xiě)的“ Z ”、橫放的“ U ”。這種形象記憶法有助于加深識(shí)記痕跡,是記憶數(shù)學(xué)知識(shí)常用的一種好方法。
規(guī)律記憶法
即根據(jù)事物的內(nèi)在聯(lián)系,找出規(guī)律性的東西來(lái)進(jìn)行記憶。比如,識(shí)記公制長(zhǎng)度單位、面積單位、體現(xiàn)單位的化法和聚法?;ê途鄯ㄊ腔ツ媛?lián)系,即高級(jí)單位的數(shù)值×進(jìn)率:低級(jí)單位的數(shù)值,低級(jí)單位的數(shù)值+進(jìn)率=高級(jí)單位的數(shù)值。掌握了這兩條規(guī)律,化聚問(wèn)題就迎刃而解了。規(guī)律記憶,需要學(xué)生開(kāi)動(dòng)腦筋對(duì)所學(xué)的有關(guān)材料進(jìn)行加工和組織,因而記憶牢固。
初中數(shù)學(xué)常考知識(shí)點(diǎn)記憶方法
1、有理數(shù)的加法運(yùn)算:同號(hào)相加一邊倒;異號(hào)相加"大"減"小",符號(hào)跟著大的跑;絕對(duì)值相等"零"正好。[注]"大"減"小"是指絕對(duì)值的大小。
2、合并同類項(xiàng):合并同類項(xiàng),法則不能忘,只求系數(shù)和,字母、指數(shù)不變樣。
3、去、添括號(hào)法則:去括號(hào)、添括號(hào),關(guān)鍵看符號(hào),括號(hào)前面是正號(hào),去、添括號(hào)不變號(hào),括號(hào)前面是負(fù)號(hào),去、添括號(hào)都變號(hào)。
4、一元一次方程:已知未知要分離,分離方法就是移,加減移項(xiàng)要變號(hào),乘除移了要顛倒。
5、恒等變換:兩個(gè)數(shù)字來(lái)相減,互換位置最常見(jiàn),正負(fù)只看其指數(shù),奇數(shù)變號(hào)偶不變。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
6、平方差公式:平方差公式有兩項(xiàng),符號(hào)相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。
7、完全平方:完全平方有三項(xiàng),首尾符號(hào)是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首±尾括號(hào)帶平方,尾項(xiàng)符號(hào)隨中央。
8、因式分解:一提(公因式)二套(公式)三分組,細(xì)看幾項(xiàng)不離譜,兩項(xiàng)只用平方差,三項(xiàng)十字相乘法,陣法熟練不馬虎,四項(xiàng)仔細(xì)看清楚,若有三個(gè)平方數(shù)(項(xiàng)),就用一三來(lái)分組,否則二二去分組,五項(xiàng)、六項(xiàng)更多項(xiàng),二三、三三試分組,以上若都行不通,拆項(xiàng)、添項(xiàng)看清楚。
9、"代入"口決:挖去字母換上數(shù)(式),數(shù)字、字母都保留;換上分?jǐn)?shù)或負(fù)數(shù),給它帶上小括弧,原括弧內(nèi)出(現(xiàn))括弧,逐級(jí)向下變括弧(小-中-大)
單項(xiàng)式運(yùn)算:加、減、乘、除、乘(開(kāi))方,三級(jí)運(yùn)算分得清,系數(shù)進(jìn)行同級(jí)(運(yùn))算,指數(shù)運(yùn)算降級(jí)(進(jìn))行。
10、一元一次不等式解題的一般步驟:去分母、去括號(hào),移項(xiàng)時(shí)候要變號(hào),同類項(xiàng)、合并好,再把系數(shù)來(lái)除掉,兩邊除(以)負(fù)數(shù)時(shí),不等號(hào)改向別忘了。
11、一元一次不等式組的解集:大大取較大,小小取較小,小大,大小取中間,大小,小大無(wú)處找。
12、一元二次不等式、一元一次絕對(duì)值不等式的解集:大(魚(yú))于(吃)取兩邊,小(魚(yú))于(吃)取中間。
13、分式混合運(yùn)算法則:分式四則運(yùn)算,順序乘除加減,乘除同級(jí)運(yùn)算,除法符號(hào)須變(乘);乘法進(jìn)行化簡(jiǎn),因式分解在先,分子分母相約,然后再行運(yùn)算;加減分母需同,分母化積關(guān)鍵;找出最簡(jiǎn)公分母,通分不是很難;變號(hào)必須兩處,結(jié)果要求最簡(jiǎn)。
14、分式方程的解法步驟:同乘最簡(jiǎn)公分母,化成整式寫(xiě)清楚,求得解后須驗(yàn)根,原(根)留、增(根)舍別含糊。
15、最簡(jiǎn)根式的條件:最簡(jiǎn)根式三條件,號(hào)內(nèi)不把分母含,冪指(數(shù))根指(數(shù))要互質(zhì),冪指比根指小一點(diǎn)。
16、特殊點(diǎn)坐標(biāo)特征:坐標(biāo)平面點(diǎn)(x,y),橫在前來(lái)縱在后;(+,+),(-,+),(-,-)和(+,-),四個(gè)象限分前后;X軸上y為0,x為0在Y軸。
17、象限角的平分線:象限角的平分線,坐標(biāo)特征有特點(diǎn),一、三橫縱都相等,二、四橫縱確相反。
18、平行某軸的直線:平行某軸的直線,點(diǎn)的坐標(biāo)有講究,直線平行X軸,縱坐標(biāo)相等橫不同;直線平行于Y軸,點(diǎn)的橫坐標(biāo)仍照舊。
19、對(duì)稱點(diǎn)坐標(biāo):對(duì)稱點(diǎn)坐標(biāo)要記牢,相反數(shù)位置莫混淆,X軸對(duì)稱y相反,Y軸對(duì)稱,x前面添負(fù)號(hào);原點(diǎn)對(duì)稱最好記,橫縱坐標(biāo)變符號(hào)。
20、自變量的取值范圍:分式分母不為零,偶次根下負(fù)不行;零次冪底數(shù)不為零,整式、奇次根全能行。
21、函數(shù)圖像的移動(dòng)規(guī)律:若把一次函數(shù)解析式寫(xiě)成y=k(x+0)+b、二次函數(shù)的解析式寫(xiě)成y=a(x+h)2+k的形式,則用下面的口訣"左右平移在括號(hào),上下平移在末稍,左正右負(fù)須牢記,上正下負(fù)錯(cuò)不了"。
22、一次函數(shù)圖像與性質(zhì)口訣:一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。
23、二次函數(shù)圖像與性質(zhì)口訣:二次函數(shù)拋物線,圖象對(duì)稱是關(guān)鍵;開(kāi)口、頂點(diǎn)和交點(diǎn),它們確定圖象現(xiàn);開(kāi)口、大小由a斷,c與Y軸來(lái)相見(jiàn),b的符號(hào)較特別,符號(hào)與a相關(guān)聯(lián);頂點(diǎn)位置先找見(jiàn),Y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點(diǎn)坐標(biāo)最重要,一般式配方它就現(xiàn),橫標(biāo)即為對(duì)稱軸,縱標(biāo)函數(shù)最值見(jiàn)。若求對(duì)稱軸位置,符號(hào)反,一般、頂點(diǎn)、交點(diǎn)式,不同表達(dá)能互換。
24、反比例函數(shù)圖像與性質(zhì)口訣:反比例函數(shù)有特點(diǎn),雙曲線相背離的遠(yuǎn);k為正,圖在一、三(象)限,k為負(fù),圖在二、四(象)限;圖在一、三函數(shù)減,兩個(gè)分支分別減。圖在二、四正相反,兩個(gè)分支分別添;線越長(zhǎng)越近軸,永遠(yuǎn)與軸不沾邊。
25、巧記三角函數(shù)定義:初中所學(xué)的三角函數(shù)有正弦、余弦、正切、余切,它們實(shí)際是三角形邊的比值,可以把兩個(gè)字用/隔開(kāi),再用下面的一句話記定義:一位不高明的廚子教徒弟殺魚(yú),說(shuō)了這么一句話:正對(duì)魚(yú)磷(余鄰)直刀切。正:正弦或正切,對(duì):對(duì)邊即正是對(duì);余:余弦或余弦,鄰:鄰邊即余是鄰;切是直角邊。
26、三角函數(shù)的增減性:正增余減特殊三角函數(shù)值記憶:首先記住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子記口訣"123,321,三九二十七"既可。