2018考研數(shù)學(xué)極限有多少種求法
2018考研數(shù)學(xué)極限有多少種求法
我們都知道極限時(shí)高等數(shù)學(xué)的第一章,那么考研數(shù)學(xué)重極限的求法有多少種?下面就是學(xué)習(xí)啦小編給大家整理的求極限的方法總結(jié),希望對(duì)你有用!
考研數(shù)學(xué)高數(shù)中求極限的方法總結(jié)
極限的保號(hào)性很重要 就是說(shuō)在一定區(qū)間內(nèi) 函數(shù)的正負(fù)與極限一致
1 極限分為 一般極限 , 還有個(gè)數(shù)列極限, (區(qū)別在于數(shù)列極限時(shí)發(fā)散的, 是一般極限的一種)
2解決極限的方法如下:(我能列出來(lái)的全部列出來(lái)了!!!!!你還能有補(bǔ)充么???)
1 等價(jià)無(wú)窮小的轉(zhuǎn)化, (只能在乘除時(shí)候使用,但是不是說(shuō)一定在加減時(shí)候不能用 但是前提是必須證明拆分后極限依然存在) e的X次方-1 或者 (1+x)的a次方-1等價(jià)于Ax 等等 。 全部熟記
(x趨近無(wú)窮的時(shí)候還原成無(wú)窮小)
2洛必達(dá)法則 (大題目有時(shí)候會(huì)有暗示 要你使用這個(gè)方法)
首先他的使用有嚴(yán)格的使用前提!!!!!!
必須是 X趨近 而不是N趨近!!!!!!!(所以面對(duì)數(shù)列極限時(shí)候先要轉(zhuǎn)化成求x趨近情況下的極限, 當(dāng)然n趨近是x趨近的一種情況而已,是必要條件
(還有一點(diǎn) 數(shù)列極限的n當(dāng)然是趨近于正無(wú)窮的 不可能是負(fù)無(wú)窮!)
必須是 函數(shù)的導(dǎo)數(shù)要存在!!!!!!!!(假如告訴你g(x), 沒(méi)告訴你是否可導(dǎo), 直接用無(wú)疑于找死!!)
必須是 0比0 無(wú)窮大比無(wú)窮大!!!!!!!!!
當(dāng)然還要注意分母不能為0
洛必達(dá) 法則分為3中情況
1 0比0 無(wú)窮比無(wú)窮 時(shí)候 直接用
2 0乘以無(wú)窮 無(wú)窮減去無(wú)窮 ( 應(yīng)為無(wú)窮大于無(wú)窮小成倒數(shù)的關(guān)系)所以 無(wú)窮大都寫(xiě)成了無(wú)窮小的倒數(shù)形式了。通項(xiàng)之后 這樣就能變成1中的形式了
3 0的0次方 1的無(wú)窮次方 無(wú)窮的0次方
對(duì)于(指數(shù)冪數(shù))方程 方法主要是取指數(shù)還取對(duì)數(shù)的方法, 這樣就能把冪上的函數(shù)移下來(lái)了, 就是寫(xiě)成0與無(wú)窮的形式了 , ( 這就是為什么只有3種形式的原因, LNx兩端都趨近于無(wú)窮時(shí)候他的冪移下來(lái)趨近于0 當(dāng)他的冪移下來(lái)趨近于無(wú)窮的時(shí)候 LNX趨近于0)
3泰勒公式 (含有e的x次方的時(shí)候 ,尤其是含有正余旋 的加減的時(shí)候要 特變注意 !!!!)
E的x展開(kāi) sina 展開(kāi) cos 展開(kāi) ln1+x展開(kāi)
對(duì)題目簡(jiǎn)化有很好幫助
4面對(duì)無(wú)窮大比上無(wú)窮大形式的解決辦法
取大頭原則 最大項(xiàng)除分子分母!!!!!!!!!!!
看上去復(fù)雜處理很簡(jiǎn)單 !!!!!!!!!!
5無(wú)窮小于有界函數(shù)的處理辦法
面對(duì)復(fù)雜函數(shù)時(shí)候, 尤其是正余旋的復(fù)雜函數(shù)與其他函數(shù)相乘的時(shí)候,一定要注意這個(gè)方法。
面對(duì)非常復(fù)雜的函數(shù) 可能只需要知道它的范圍結(jié)果就出來(lái)了!!!
6夾逼定理(主要對(duì)付的是數(shù)列極限!)
這個(gè)主要是看見(jiàn)極限中的函數(shù)是方程相除的形式 ,放縮和擴(kuò)大。
7等比等差數(shù)列公式應(yīng)用(對(duì)付數(shù)列極限) (q絕對(duì)值符號(hào)要小于1)
8各項(xiàng)的拆分相加 (來(lái)消掉中間的大多數(shù)) (對(duì)付的還是數(shù)列極限)
可以使用待定系數(shù)法來(lái)拆分化簡(jiǎn)函數(shù)
9求左右求極限的方式(對(duì)付數(shù)列極限) 例如知道Xn與Xn+1的關(guān)系, 已知Xn的極限存在的情況下, xn的極限與xn+1的極限時(shí)一樣的 ,應(yīng)為極限去掉有限項(xiàng)目極限值不變化
10 2 個(gè)重要極限的應(yīng)用。 這兩個(gè)很重要 !!!!!對(duì)第一個(gè)而言是X趨近0時(shí)候的sinx與x比值 。 地2個(gè)就如果x趨近無(wú)窮大 無(wú)窮小都有對(duì)有對(duì)應(yīng)的形式
(地2個(gè)實(shí)際上是 用于 函數(shù)是1的無(wú)窮的形式 )(當(dāng)?shù)讛?shù)是1 的時(shí)候要特別注意可能是用地2 個(gè)重要極限)
11 還有個(gè)方法 ,非常方便的方法
就是當(dāng)趨近于無(wú)窮大時(shí)候
不同函數(shù)趨近于無(wú)窮的速度是不一樣的!!!!!!!!!!!!!!!
x的x次方 快于 x! 快于 指數(shù)函數(shù) 快于 冪數(shù)函數(shù) 快于 對(duì)數(shù)函數(shù) (畫(huà)圖也能看出速率的快慢) !!!!!!
當(dāng)x趨近無(wú)窮的時(shí)候 他們的比值的極限一眼就能看出來(lái)了
12 換元法 是一種技巧,不會(huì)對(duì)模一道題目而言就只需要換元, 但是換元會(huì)夾雜其中
13假如要算的話 四則運(yùn)算法則也算一種方法 ,當(dāng)然也是夾雜其中的
14還有對(duì)付數(shù)列極限的一種方法,
就是當(dāng)你面對(duì)題目實(shí)在是沒(méi)有辦法 走投無(wú)路的時(shí)候可以考慮 轉(zhuǎn)化為定積分。 一般是從0到1的形式 。
15單調(diào)有界的性質(zhì)
對(duì)付遞推數(shù)列時(shí)候使用 證明單調(diào)性!!!!!!
16直接使用求導(dǎo)數(shù)的定義來(lái)求極限 ,
(一般都是x趨近于0時(shí)候,在分子上f(x加減麼個(gè)值)加減f(x)的形式, 看見(jiàn)了有特別注意)
(當(dāng)題目中告訴你F(0)=0時(shí)候 f(0)導(dǎo)數(shù)=0的時(shí)候 就是暗示你一定要用導(dǎo)數(shù)定義!!!!)
考研數(shù)學(xué)復(fù)習(xí)極限知識(shí)點(diǎn)去全解
一、極限在考研數(shù)學(xué)中的要求
根據(jù)考研大綱,極限需要理解和掌握的是:極限的概念,函數(shù)左右極限的概念以及函數(shù)極限存在與左右極限的關(guān)系,極限的性質(zhì)及四則運(yùn)算法則,極限存在的兩個(gè)準(zhǔn)則,利用兩個(gè)重要極限計(jì)算極限的方法,無(wú)窮小量、無(wú)窮大量的概念,無(wú)窮小的比較方法。
要求會(huì)求和了解的是:利用極限存在的兩個(gè)準(zhǔn)則求極限,用等價(jià)無(wú)窮小量求極限。
二、極限是高等數(shù)學(xué)的基礎(chǔ)
1、極限是高數(shù)三大基本工具(極限、微分、積分)中最基本的工具,也是微分與積分的基礎(chǔ)。另外高等數(shù)學(xué)中很多概念都是通過(guò)極限來(lái)定義的,如連續(xù)的概念,導(dǎo)數(shù)的概念,定積分的概念以及級(jí)數(shù)的概念都是通過(guò)極限來(lái)定義的??佳袛?shù)學(xué)雖然大多數(shù)題目是計(jì)算題,但是只記住計(jì)算步驟,死記硬背,是萬(wàn)萬(wàn)不行的。要想考高分,需要對(duì)基本概念的理解到位,否則你學(xué)的知識(shí)就如同浮光掠影,很難取得好成績(jī)。因此,我們從最基礎(chǔ)的極限開(kāi)始就要學(xué)習(xí)到位,基本概念理解好,極限計(jì)算要熟練,為以下各章節(jié)的學(xué)習(xí)打好基礎(chǔ)。
2、考研中的很多題目也間接與極限有聯(lián)系,尤其是極限的計(jì)算一定要過(guò)關(guān),因?yàn)楹芏囝}目的計(jì)算都會(huì)用到極限的計(jì)算。如判斷函數(shù)的連續(xù)性,找函數(shù)的間斷點(diǎn)的類型,求漸近線,求函數(shù)一點(diǎn)數(shù)的導(dǎo)數(shù),級(jí)數(shù)的斂散性的判別,求冪級(jí)數(shù)的收斂半徑和收斂域,這些問(wèn)題都會(huì)用到極限,如果極限不會(huì)求這些題目就無(wú)法做出來(lái)。所以考生在復(fù)習(xí)極限這章的時(shí)候一定要到位,計(jì)算尤其要過(guò)關(guān),否則后患無(wú)窮。
三、極限在考研數(shù)學(xué)中的常見(jiàn)題型
極限這部分不計(jì)間接命題,直接命題的分值一般是一道小題(4分)和一道大題(10分左右),足見(jiàn)本章內(nèi)容的重要性。
直接命題常見(jiàn)題型:
(1)考查極限的概念,常見(jiàn)于選擇題;
(2)求極限式中的未知參數(shù);
(3)直接計(jì)算函數(shù)的極限;
(4)考查極限的概念,常見(jiàn)于選擇題;
(5)利用收斂準(zhǔn)則,求數(shù)列極限,常見(jiàn)于數(shù)一、數(shù)二。
(6)結(jié)合無(wú)窮小的比較考查極限的計(jì)算;
極限計(jì)算常用7種突圍方法
(一) 四則運(yùn)算法則
四則運(yùn)算法則在極限中最直接的應(yīng)用就是分解,即將復(fù)雜的函數(shù)分解為若干個(gè)相對(duì)簡(jiǎn)單的函數(shù)和、積和商,各自求出極限即可得到要求的極限。但是在分解的時(shí)候要注意:(1)分解的各部分各自的極限都要存在;(2)滿足相應(yīng)四則運(yùn)算法則,(分母不能為0)。四則運(yùn)算的另外一個(gè)應(yīng)用就是“抓大頭”。如果極限式中有幾項(xiàng)均是無(wú)窮大,就從無(wú)窮大中選取起主要作用的那一項(xiàng),選取的標(biāo)準(zhǔn)是選趨近于無(wú)窮最快的那一項(xiàng),對(duì)數(shù)函數(shù)趨于無(wú)窮的速度遠(yuǎn)遠(yuǎn)小于冪函數(shù),冪函數(shù)趨于無(wú)窮的速度遠(yuǎn)遠(yuǎn)小于指數(shù)函數(shù)。
(二) 洛必達(dá)法則(結(jié)合等價(jià)無(wú)窮小替換、變限積分求導(dǎo))
洛必達(dá)法則解決的是“零比零“或“無(wú)窮比無(wú)窮”型的未定式的形式,所以只要是這兩種形式的未定式都可以考慮用洛必達(dá)法則。當(dāng)然,在用洛必達(dá)的時(shí)候需要注意(1)它的三個(gè)條件都要滿足,尤其要注意第二三個(gè)條件,當(dāng)三個(gè)條件都滿足的時(shí)候才能用洛必達(dá)法則;(2)用洛必達(dá)法則之前一定要先化簡(jiǎn),把要求極限的式子化成“干凈”的式子,否則會(huì)遇到越求導(dǎo)越麻煩的情況,有的甚至求不出來(lái),所以一定要先化簡(jiǎn)。化簡(jiǎn)常用的方法就是等價(jià)無(wú)窮小替換,有時(shí)也會(huì)用到四則運(yùn)算??忌欢ㄒ煊洺S玫牡葍r(jià)無(wú)窮小,以及替換原則(乘除因子可以替換,加減不要替換)??佳兄?,除了也常常會(huì)把變限積分和洛必達(dá)相結(jié)合進(jìn)行考查,這種類型的題目,首先要考慮洛必達(dá),但是我們也要掌握變限積分求導(dǎo)。
另外,考試中有時(shí)候不直接考查“零比零“或“無(wú)窮比無(wú)窮”型,會(huì)出“零乘以無(wú)窮”,“無(wú)窮減無(wú)窮”這種形式,我們用的方法就是把他們變成“零比零“或“無(wú)窮比無(wú)窮”型。
(三) 利用泰勒公式求極限
利用泰勒公式求極限,也是考研中常見(jiàn)的方法。泰勒公式可以將常用的等價(jià)無(wú)窮小進(jìn)行推廣,如,等。也可以用來(lái)求解未知極限式中的未知參數(shù),和解決抽象函數(shù)的極限。尤其是未知極限式中的未知參數(shù),比起洛必達(dá)更適合用泰勒公式去做。
(四) 冪指函數(shù)的極限計(jì)算方法
冪指函數(shù)指的是,底數(shù)和指數(shù)都是函數(shù)的函數(shù)。對(duì)于冪指函數(shù)考研中經(jīng)??嫉念}型是未定式的形式,如:,,。統(tǒng)一的處理方式是做恒等變形,從而只要能計(jì)算出極限就可以了。當(dāng)然對(duì)于的形式除了用剛才那種方法,也可以用重要極限去做。對(duì)于用兩種方法得出的結(jié)果都是,其中。把這個(gè)當(dāng)結(jié)論記住,遇到的形式直接用就可以了。
(五) 夾逼定理
夾逼定理是極限這部分兩個(gè)收斂準(zhǔn)則之一,數(shù)一數(shù)二要求掌握并會(huì)用它求極限。數(shù)三要求了解極限存在的收斂準(zhǔn)則,經(jīng)常以求項(xiàng)和的極限這種形式出現(xiàn)或數(shù)列極限的形式出現(xiàn)。使用夾逼定理的核心在于放縮,即將要計(jì)算極限的函數(shù)或數(shù)列放大和縮小之后分別求極限,如果這兩者的極限都等于同一個(gè)數(shù),那么原先的函數(shù)或數(shù)列的極限也就等于這個(gè)數(shù)。這里在放縮的時(shí)候一般要遵循兩個(gè)基本原則:一是要便于計(jì)算,二是要適度(也即放縮之后的極限必須一致)。夾逼定理主要用來(lái)求數(shù)列極限,對(duì)數(shù)一數(shù)二的要求高一些。
(六) 單調(diào)有界定理
單調(diào)有界定理是極限存在的另一個(gè)收斂準(zhǔn)則。考研中的題型主要是證明一個(gè)數(shù)列極限存在,并求其極限常見(jiàn)于數(shù)一二,尤其是數(shù)二,11、12、13年連續(xù)三年考單調(diào)有界定理。這種類型題目,主要就是證明數(shù)列單調(diào)有界(單調(diào)遞增有上界,單調(diào)遞減有下界)即可。
(七) 定積分定義
考研中求項(xiàng)和的極限這類題型用夾逼定理做不出來(lái),這時(shí)候需要用定積分定義去求極限。常用的是這種形式,只要把要求的極限湊成等是左邊的形式,就可以用定積分去求極限了。
猜你喜歡:
1.2018考研數(shù)學(xué)快速答題的七個(gè)小竅門(mén)
2.2018考研數(shù)學(xué)一怎么復(fù)習(xí)效果好
3.2018考研數(shù)學(xué)怎么準(zhǔn)備
4.2018考研數(shù)學(xué)最后十天沖刺怎么復(fù)習(xí)建議