18禁网站免费,成年人黄色视频网站,熟妇高潮一区二区在线播放,国产精品高潮呻吟AV

學(xué)習(xí)啦>學(xué)習(xí)方法>初中學(xué)習(xí)方法>初二學(xué)習(xí)方法>八年級數(shù)學(xué)>

8年級下冊數(shù)學(xué)練習(xí)冊答案

時(shí)間: 鄭曉823 分享

  8年級下冊數(shù)學(xué)練習(xí)冊的答案有哪些呢?接下來是學(xué)習(xí)啦小編為大家?guī)淼?年級下冊數(shù)學(xué)練習(xí)冊答案,供大家參考。

  8年級下冊數(shù)學(xué)練習(xí)冊答案:第十一章 全等三角形

  §11.1全等三角形

  一、1. C 2. C

  二、1.(1)①AB DE ②AC DC ③BC EC

  (2)①∠A ∠D ②∠B ∠E ③∠ACB ∠DCE

  2. 120 4

  三、1.對應(yīng)角分別是:∠AOC和∠DOB,∠ACO和∠DBO,∠A和∠D.

  對應(yīng)邊分別是:AO和DO,OB和OC,AC和DB.

  2.相等,理由如下:

  ∵△ABC≌△DFE ∴BC=FE ∴BC-EC=FE-EC ∴BE=FC

  3.相等,理由如下:∵△ABC≌△AEF ∴∠CAB=∠FAE ∴∠CAB—∠BAF=∠FAE —∠BAF 即∠CAF=∠EAB

  §11.2全等三角形的判定(一)

  一、1. 100 2. △BAD,三邊對應(yīng)相等的兩個(gè)三角形全等(SSS)

  3. 2, △ADB≌△DAC,△ABC≌△DCB 4. 24

  二、1. ∵BG=CE ∴BE=CG 在△ABE和△DCG中,

  ∴△ABE≌△DCG(SSS),∴∠B=∠C

  2. ∵D是BC中點(diǎn),∴BD=CD,在△ABD和△ACD中,

  ∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC

  又∵∠ADB+∠ADC=180°∴∠ADB=90° ∴AD⊥BC

  3.提示:證△AEC≌△BFD,∠DAB=∠CBA, ∵∠1=∠2 ∴∠DAB-∠1=∠CBA-∠2 可得∠ACE=∠FDB

  §11.2全等三角形的判定(二)

  一、1.D 2.C

  二、1.OB=OC 2. 95

  三、1. 提示:利用“SAS”證△DAB≌△CBA可得∠DAC=∠DBC.

  2. ∵∠1=∠2 ∴∠1+∠CAD=∠2+∠CAD即∠BAC=∠DAE,在△BAC和△DAE中, ∴△BAC≌△DAE(SAS)∴BC=DE

  3.(1)可添加條件為:BC=EF或BE=CF

  (2)∵AB∥DE ∴∠B=∠DEF,在△ABC和△DEF中,

  ∴△ABC≌△DEF(SAS)

  §11.2全等三角形的判定(三)

  一、1. C 2. C

  二、1.AAS 2.(1)SAS (2)ASA 3.(答案不唯一)∠B=∠B1,∠C=∠C1等 三、1.在△ACE和△ABD中, ∴△ACE≌△ABD(AAS)

  2.(1)∵AB//DE ∴∠B=∠DEF ∵AC//DF ∴∠ACB=∠F 又∵BE=CF

  ∴BE+EC=CF+EC ∴BC=EF ∴△ABC≌△DEF(ASA)

  3. 提示:用“AAS”和“ASA”均可證明.

  §11.2全等三角形的判定(四)

  一、1.D 2.C

  二、1.ADC,HL;CBE SAS 2. AB=A'B'(答案不唯一)

  3.Rt△ABC,Rt△DCB,AAS,△DOC

  三、1.證明:∵AE⊥BC,DF⊥BC,∴∠CEA=∠DFB=90°∵BE=CF,∴BC-BE=BC-CF即CE=BF 在Rt△ACE和Rt△DBF中, ∴Rt△ACE≌ Rt△DBF(HL)

  ∴∠ACB=∠DBC ∴AC//DB

  2.證明:∵AD⊥BC,CE⊥AB ∴∠ADB=∠CEB=90°.又∵∠B=∠B ,AD=CE ∴△ADB≌△CEB(AAS)

  3.(1)提示利用“HL”證Rt△ADO≌Rt△AEO,進(jìn)而得∠1=∠2;

  (2)提示利用“AAS”證△ADO≌△AEO,進(jìn)而得OD=OE.

  11.2三角形全等的判定(綜合)

  一、1.C 2.B 3.D 4.B 5.B

  二、1. 80° 2. 2 3. 70° 4. (略)

  三、1.(1)∵AB⊥BE,DE⊥BE,∵∠B=∠E=90° 又∵BF=CE,∴BC=EF, 在Rt△ABC和Rt△DEF中, ∴△ABC≌△DEF

  (2)∵△ABC≌△DEF ∴∠GFC=∠GCF ∴GF=GC

  2.△ADC≌△AEB,△BDF≌△CEF 或△BDC≌△CEB ∵D、E分別是AB、AC的中點(diǎn),AB=AC

  ∴AD=AE.在△ADC和△AEB中, ∴△ADC≌△AEB(SAS)

  §11.3角的平分線的性質(zhì)

  一、1.C 2.D 3.B 4.B 5.B 6.D

  二、1. 5 2. ∠BAC的角平分線 3.4cm

  三、1.在A內(nèi)作公路與鐵路所成角的平分線;并在角平分線上按比例尺截取BC=2cm,C點(diǎn)即為所求(圖略).

  2. 證明:∵D是BC中點(diǎn),∴BD=CD.

  ∵ED⊥AB,DF⊥AC,∴∠BED=∠CFD=∠AED=∠AFD=90°.

  在△BED與△CFD中, ∴△BED≌△CFD(AAS)∴DE=DF,

  ∴AD平分∠BAC

  3.(1)過點(diǎn)E作EF⊥DC,∵E是∠BCD,∠ADC的平分線的交點(diǎn),又∵DA⊥AB,CB⊥AB,EF⊥DC,∴AE=EF,BE=EF,即AE=BE

  (2)∵∠A=∠B=90°,∴AD//BC,∴∠ADC+∠BCD=180°.又∵∠EDC= ∠ADC, ∠ECD= ∠BCD ∴∠EDC+∠ECD=90°∴∠DEC=180°-(∠EDC+∠ECD)=90°

  4. 提示:先運(yùn)用AO是∠BAC的平分線得DO=EO,再利用“ASA”證△DOB≌△EOC,進(jìn)而得BO=CO.

  8年級下冊數(shù)學(xué)練習(xí)冊答案:第十二章 軸對稱

  §12.1軸對稱(一)

  一、1.A 2.D

  二、1. (注一個(gè)正“E”和一個(gè)反“E”合在一起) 2. 2 4 3.70° 6

  三、1.軸對稱圖形有:圖(1)中國人民銀行標(biāo)志,圖(2)中國鐵路標(biāo)徽,圖(4)沈陽太空集團(tuán)標(biāo)志三個(gè)圖案.其中圖(1)有3條對稱軸,圖(2)與(4)均只有1條對稱軸.

  2. 圖2:∠1與∠3,∠9與∠10,∠2與∠4,∠7與∠8,∠B與∠E等; AB與AE,BC與ED,AC與AD等. 圖3:∠1與∠2,∠3與∠4,∠A與∠A′等;AD與A′D′,

  CD與C′D′, BC與B′C′等.

  §12.1軸對稱(二)

  一、1.B 2.B 3.C 4.B 5.D

  二、1.MB 直線CD 2. 10cm 3. 120°

  三、1.(1)作∠AOB的平分線OE; (2)作線段MN的垂直平分線CD,OE與CD交于點(diǎn)P,

  點(diǎn)P就是所求作的點(diǎn).

  2.解:因?yàn)橹本€m是多邊形ABCDE的對稱軸,則沿m折疊左右兩部分完全重合,所以

  ∠A=∠E=130°,∠D=∠B=110°,由于五邊形內(nèi)角和為(5-2)×180°=540°, 即∠A+∠B+∠BCD+∠D+∠E=540°,130°+110°+∠BCD+110°+130°=540°,

  所以∠BCD=60°

  3. 20提示:利用線段垂直平分線的性質(zhì)得出BE=AE.

  §12.2.1作軸對稱圖形

  一、1.A 2.A 3.B

  二、1.全等 2.108

  三、1. 提示:作出圓心O′,再給合圓O的半徑作出圓O′. 2.圖略

  3.作點(diǎn)A關(guān)于直線a的對稱點(diǎn)A′,連接A′B交直線a于點(diǎn)C,則點(diǎn)C為所求.當(dāng)該站建在河邊C點(diǎn)時(shí),可使修的渠道最短.如圖

  §12.2.2用坐標(biāo)表示軸對稱

  一、1.B 2.B 3.A 4.B 5.C

  二、1.A(0,2), B(2,2), C(2,0), O(0,0)

  2.(4,2) 3. (-2,-3)

  三、1. 解:A(-3,0),B(-1,-3),C(4,0),D(-1,3),

  點(diǎn)A、B、C、D關(guān)于y軸的對稱點(diǎn)坐標(biāo)分別為A′(3,0)、

  B′(1,-3)、C′(-4,0)、D′(1,3)順次連接A′B′C′D′.如上圖

  2.解:∵M(jìn),N關(guān)于x軸對稱, ∴

  ∴ ∴ba+1=(-1)3+1=0

  3.解:A′(2,3),B′(3,1),C′(-1,-2)

  §12.3.1等腰三角形(一)

  一、1.D 2.C

  二、1. 40°,40° 2. 70°,55°,55°或40°,70°,70° 3. 82.5°

  三、1.證明: ∵∠EAC是△ABC的外角 ∴∠EAC=∠1+∠2=∠B+∠C ∵AB=AC ∴∠B=∠C ∴∠1+∠2=2∠C ∵∠1=∠2 ∴2∠2=2∠C

  ∴∠2=∠C ∴AD//BC

  2.解∵AB=AC,AD=BD,AC=CD ∴∠B=∠C=∠BAD,∠ADC=∠DAC.設(shè)∠B=x, 則∠ADC=∠B+∠BAD=2x,∴∠DAC=∠ADC=2x,∴∠BAC=3x.于是在△ABC中, ∠B+∠C+∠BAC=x+x+3x=180°,得x=36∴∠B=36°.

  §12.3.2等腰三角形(二)

  一、1.C 2.C 3.D

  二、1.等腰 2. 9 3.等邊對等角,等角對等邊

  三、1.由∠OBC=∠OCB得BO=CO,可證△ABO≌△ACO,得AB=AC ∴△ABC是等腰三角形.

  2.能.理由:由AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,得△ABE≌△DCE,∴BE=CE, ∴△BEC是等腰三角形.

  3.(1)利用“SAS”證△ABC≌△AED. (2)△ABC≌△AED可得∠ABO=∠AEO, AB=AE得∠ABE=∠AEB.進(jìn)而得∠OBE=∠OEB,最后可證OB=OE.

  §12.3.3等邊三角形

  一、1.B 2.D 3.C

  二、1.3cm 2. 30°,4 3. 1 4. 2

  三、1.證明:∵在△ADC中,∠ADC=90°, ∠C=30° ∴∠FAE=60° ∵在△ABC中, ∠BAC=90°,∠C=30°∴∠ABC=60°∵BE平分∠ABC,∴∠ABE= ×60°=30° ∵在△ABE中,∠ABE=30°,∠BAE=90° ∴∠AEF=60°

  ∴在△AEF中∠FAE=∠AEF=60° ∴FA=FE ∵∠FAE=60°∴△AFE為等邊三角形.

  2.解:∵DA是∠CAB的平分線,DE⊥AB,DC⊥AC,∴DE=CD=3cm,在Rt△ABC中, 由于∠CAB=60°,∴∠B=30°.在Rt△DEB中,∵∠B=30°,DE=3cm,∴DB=2DE=6cm ∴BC=CD+DE=3+6=9(cm)

  3. 證明:∵△ABC為等邊三角形,∴BA=CA , ∠BAD=60°.

  在△ABD和△ACE中, ∴△ABD≌△ACE(SAS)∴AD=AE,

  ∠BAD=∠CAE=60°∴△ADE是等邊三角形.

  4. 提示:先證BD=AD,再利用直角三角形中,30°角所對的直角邊是斜邊的一半, 得DC=2AD.

  8年級下冊數(shù)學(xué)練習(xí)冊答案:第十三章 實(shí)數(shù)

  §13.1平方根(一)

  一、1. D 2. C

  二、1. 6 2. 3. 1

  三、1. (1)16 (2) (3)0.4

  2. (1)0, (2)3 , (3) (4)40 (5)0.5 (6) 4

  3. =0.5 4. 倍; 倍.

  §13.1平方根(二)

  一、1. C 2. D

  二、1. 2 2. 3. 7和8

  三、1.(1) (2) (3)

  2.(1)43 (2)11.3 (3)12.25 (4) (5)6.62

  3.(1)0.5477 1.732 5.477 17.32

  (2)被開方數(shù)的小數(shù)點(diǎn)向右(左)移動兩位,所得結(jié)果小數(shù)點(diǎn)向右(左) 移動一位。 (3)0.1732 54.77

  §13.1平方根(三)

  一、1. D 2. C

  二、1. ,2 2, 3.

  三、1.(1) (2) (3) (4)

  2.(1) (2)-13 (3)11 (4)7 (5) 1.2 (6)-

  3.(1) (2) (3) (4)

  4. ,這個(gè)數(shù)是4 5. 或

  §13.2立方根(一)

  一、1. A 2. C

  二、1. 125 2. ±1和0 3. 3

  三、1.(1)-0.1 (2)-7 (3) (4)100 (5)- (6)-2

  2.(1)-3 (2) (3) 3. (a≠1)

  §13.2立方根(二)

  一、1. B 2. D


猜你感興趣:

1.2016八年級下冊數(shù)學(xué)練習(xí)冊答案

2.八年級下冊數(shù)學(xué)練習(xí)冊答案青島版

3.人教版八年級下冊數(shù)學(xué)練習(xí)冊答案

4.2016八年級下冊數(shù)學(xué)練習(xí)冊答案

5.八年級下冊數(shù)學(xué)練習(xí)冊答案

957096