七年級數(shù)學(xué)(下)知識點(diǎn)總結(jié)
人教版七年級數(shù)學(xué)下冊主要包括相交線與平行線、平面直角坐標(biāo)系、三角形、二元一次方程組、不等式與不等式組和數(shù)據(jù)的收集、整理與表述六章內(nèi)容。以下是學(xué)習(xí)啦小編整理的重要章節(jié)的的知識點(diǎn),給大家的學(xué)習(xí)提供資料,希望能幫到你。
七年級數(shù)學(xué)(下)知識點(diǎn)
第二章 相交線與平行線
一、知識框架
二、知識概念
1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個角中,有公共頂點(diǎn)且有一條公共邊的兩個角是鄰補(bǔ)角。
2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
4.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。
5.同位角、內(nèi)錯角、同旁內(nèi)角:
同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。
內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。
同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。
6.命題:判斷一件事情的語句叫命題。
7.平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
8.對應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這樣的兩個點(diǎn)叫做對應(yīng)點(diǎn)。
9.定理與性質(zhì)
對頂角的性質(zhì):對頂角相等。
10垂線的性質(zhì):
性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
11.平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
12.平行線的性質(zhì):
性質(zhì)1:兩直線平行,同位角相等。
性質(zhì)2:兩直線平行,內(nèi)錯角相等。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。
13.平行線的判定:
判定1:同位角相等,兩直線平行。
判定2:內(nèi)錯角相等,兩直線平行。
判定3:同旁內(nèi)角相等,兩直線平行。
本章使學(xué)生了解在平面內(nèi)不重合的兩條直線相交與平行的兩種位置關(guān)系,研究了兩條直線相交時的形成的角的特征,兩條直線互相垂直所具有的特性,兩條直線平行的長期共存條件和它所有的特征以及有關(guān)圖形平移變換的性質(zhì),利用平移設(shè)計一些優(yōu)美的圖案. 重點(diǎn):垂線和它的性質(zhì),平行線的判定方法和它的性質(zhì),平移和它的性質(zhì),以及這些的組織運(yùn)用. 難點(diǎn):探索平行線的條件和特征,平行線條件與特征的區(qū)別,運(yùn)用平移性質(zhì)探索圖形之間的平移關(guān)系,以及進(jìn)行圖案設(shè)計。
第三章 平面直角坐標(biāo)系
一.知識框架
二.知識概念
1.有序數(shù)對:有順序的兩個數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做(a,b)
2.平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。
3.橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
4.坐標(biāo):對于平面內(nèi)任一點(diǎn)P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)。
5.象限:兩條坐標(biāo)軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點(diǎn)不在任何一個象限內(nèi)。
平面直角坐標(biāo)系是數(shù)軸由一維到二維的過渡,同時它又是學(xué)習(xí)函數(shù)的基礎(chǔ),起到承上啟下的作用。另外,平面直角坐標(biāo)系將平面內(nèi)的點(diǎn)與數(shù)結(jié)合起來,體現(xiàn)了數(shù)形結(jié)合的思想。掌握本節(jié)內(nèi)容對以后學(xué)習(xí)和生活有著積極的意義。教師在講授本章內(nèi)容時應(yīng)多從實際情形出發(fā),通過對平面上的點(diǎn)的位置確定發(fā)展學(xué)生創(chuàng)新能力和應(yīng)用意識。
第四章 三角形
一.知識框架
二.知識概念
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。
3.高:從三角形的一個頂點(diǎn)向它的對邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。
4.中線:在三角形中,連接一個頂點(diǎn)和它的對邊中點(diǎn)的線段叫做三角形的中線。
5.角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點(diǎn)和交點(diǎn)之間的線段叫做三角形的角平分線。
6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定性。
6.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。
7.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。
8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
9.多邊形的對角線:連接多邊形不相鄰的兩個頂點(diǎn)的線段,叫做多邊形的對角線。
10.正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。
11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
12.公式與性質(zhì)
三角形的內(nèi)角和:三角形的內(nèi)角和為180°
三角形外角的性質(zhì):
性質(zhì)1:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。
性質(zhì)2:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。
多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)·180°
多邊形的外角和:多邊形的內(nèi)角和為360°。
多邊形對角線的條數(shù):(1)從n邊形的一個頂點(diǎn)出發(fā)可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。
(2)n邊形共有 條對角線。
三角形是初中數(shù)學(xué)中幾何部分的基礎(chǔ)圖形,在學(xué)習(xí)過程中,教師應(yīng)該多鼓勵學(xué)生動腦動手,發(fā)現(xiàn)和探索其中的知識奧秘。注重培養(yǎng)學(xué)生正確的數(shù)學(xué)情操和幾何思維能力。
第八章 二元一次方程組
一.知識結(jié)構(gòu)圖
二、知識概念
1.二元一次方程:含有兩個未知數(shù),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次。方程,一般形式是 ax+by=c(a≠0,b≠0)。
2.二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數(shù)的值叫做二元一次方程組的解。
4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。
5.消元:將未知數(shù)的個數(shù)由多化少,逐一解決的想法,叫做消元思想。
6.代入消元:將一個未知數(shù)用含有另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進(jìn)而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。
7.加減消元法:當(dāng)兩個方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),這種方法叫做加減消元法,簡稱加減法。
本章通過實例引入二元一次方程,二元一次方程組以及二元一次方程組的概念,培養(yǎng)學(xué)生對概念的理解和完整性和深刻性,使學(xué)生掌握好二元一次方程組的兩種解法. 重點(diǎn):二元一次方程組的解法,列二元一次方程組解決實際問題. 難點(diǎn):二元一次方程組解決實際問題
第九章 不等式與不等式組
一.知識框架
二、知識概念
1.用符號“<”“>”“≤ ”“≥”表示大小關(guān)系的式子叫做不等式。
2.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
3.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
5.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成6.了一個一元一次不等式組。
7.定理與性質(zhì)
不等式的性質(zhì):
不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個數(shù)(或式子),不等號的方向不變。
不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。
不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方向改變。
本章內(nèi)容要求學(xué)生經(jīng)歷建立一元一次不等式(組)這樣的數(shù)學(xué)模型并應(yīng)用它解決實際問題的過程,體會不等式(組)的特點(diǎn)和作用,掌握運(yùn)用它們解決問題的一般方法,提高分析問題、解決問題的能力,增強(qiáng)創(chuàng)新精神和應(yīng)用數(shù)學(xué)的意識。
第十章 數(shù)據(jù)的收集、整理與描述
一.知識框架
全面調(diào)查
抽樣調(diào)查
收集數(shù)據(jù)
描述數(shù)據(jù)
整理數(shù)據(jù)
分析數(shù)據(jù)
得出結(jié)論
二.知識概念
1.全面調(diào)查:考察全體對象的調(diào)查方式叫做全面調(diào)查。
2.抽樣調(diào)查:調(diào)查部分?jǐn)?shù)據(jù),根據(jù)部分來估計總體的調(diào)查方式稱為抽樣調(diào)查。
3.總體:要考察的全體對象稱為總體。
4.個體:組成總體的每一個考察對象稱為個體。
5.樣本:被抽取的所有個體組成一個樣本。
6.樣本容量:樣本中個體的數(shù)目稱為樣本容量。
7.頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個數(shù)為該組的頻數(shù)。
8.頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。
9.組數(shù)和組距:在統(tǒng)計數(shù)據(jù)時,把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的個數(shù)稱為組數(shù),每一組兩個端點(diǎn)的差叫做組距。
本章要求通過實際參與收集、整理、描述和分析數(shù)據(jù)的活動,經(jīng)歷統(tǒng)計的一般過程,感受統(tǒng)計在生活和生產(chǎn)中的作用,增強(qiáng)學(xué)習(xí)統(tǒng)計的興趣,初步建立統(tǒng)計的觀念,培養(yǎng)重視調(diào)查研究的良好習(xí)慣和科學(xué)態(tài)度。