2017年高中數(shù)學(xué)函數(shù)必考性質(zhì)匯總
2017年高中數(shù)學(xué)函數(shù)必考性質(zhì)匯總
高中數(shù)學(xué)的函數(shù)部分是高中數(shù)學(xué)的重點(diǎn)和難點(diǎn),考生需要深入理解考試??嫉闹R(shí),下面是學(xué)習(xí)啦小編給大家?guī)?lái)的2017年高中數(shù)學(xué)函數(shù)必考性質(zhì)匯總,希望對(duì)你有幫助。
高中數(shù)學(xué)一次函數(shù)必考性質(zhì)
一、定義與定義式
自變量x和因變量y有如下關(guān)系:y=kx+b 則此時(shí)稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx (k為常數(shù),k≠0)
二、一次函數(shù)的性質(zhì)
1.y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b (k為任意不為零的實(shí)數(shù) b取任何實(shí)數(shù))
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì)
1.作法與圖形:通過(guò)如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線,可以作出一次函數(shù)的圖像——一條直線。
因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2.性質(zhì):
(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。
(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k>0時(shí),直線必通過(guò)一、三象限,y隨x的增大而增大;
當(dāng)k<0時(shí),直線必通過(guò)二、四象限,y隨x的增大而減小。
當(dāng)b>0時(shí),直線必通過(guò)一、二象限;
當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)
當(dāng)b<0時(shí),直線必通過(guò)三、四象限。
特別地,當(dāng)b=0時(shí),直線通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過(guò)一、三象限;當(dāng)k<0時(shí),直線只通過(guò)二、四象限。
四、確定一次函數(shù)的表達(dá)式
已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過(guò)點(diǎn)A、B的一次函數(shù)的表達(dá)式。
(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。
(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b 和y2=kx2+b
(3)解這個(gè)二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用
1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。
六、常用公式:(不全面,可以在書上找)
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點(diǎn):|x1-x2|/2
3.求與y軸平行線段的中點(diǎn):|y1-y2|/2
4.求任意線段的長(zhǎng):√(x1-x2)2+(y1-y2)2 (注:根號(hào)下(x1-x2)與(y1-y2)的平方和)
高中數(shù)學(xué)二次函數(shù)必考性質(zhì)
一、定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,|a|還可以決定開口大小,|a|越大開口就越小,|a|越小開口就越大。)
則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
二、二次函數(shù)的三種表達(dá)式
一般式:y=ax2+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)2+k [拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x?)(x-x?) [僅限于與x軸有交點(diǎn)A(x?,0)和 B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2ak=(4ac-b2)/4a x1,x2=(-b±√b2-4ac)/2a
三、二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
四、拋物線的性質(zhì)
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x= -b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P( -b/2a ,(4ac-b2)/4a )
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
Δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
Δ= b^2-4ac<0時(shí),拋物線與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x= -b±√b^2-4ac 的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
五、二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax2+bx+c,
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),
即ax2+bx+c=0
此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。
函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1.二次函數(shù)y=ax2,y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下:
解析式 和 頂點(diǎn)坐標(biāo)對(duì) 和 對(duì)稱軸
y=ax2 (0,0) x=0
y=a(x-h)2 (h,0) x=h
y=a(x-h)2+k (h,k) x=h
y=ax2+bx+c (-b/2a,[4ac-b2]/4a) x=-b/2a
當(dāng)h>0時(shí),y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到。
當(dāng)h>0,k>0時(shí),將拋物線y=ax2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)2+k的圖象;
當(dāng)h>0,k<0時(shí),將拋物線y=ax2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;
當(dāng)h<0,k>0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;
當(dāng)h<0,k<0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)2+k的圖象;
因此,研究拋物線 y=ax2+bx+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(x-h)2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。
2.拋物線y=ax2+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b2]/4a).
3.拋物線y=ax2+bx+c(a≠0),若a>0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而減小;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x ≤ -b/2a時(shí),y隨x的增大而增大;當(dāng)x ≥ -b/2a時(shí),y隨x的增大而減小.
4.拋物線y=ax2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
(2)當(dāng)△=b2-4ac>0,圖象與x軸交于兩點(diǎn)A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0
(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x?-x?|
當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△<0.圖象與x軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0.
5.拋物線y=ax2+bx+c的最值:如果a>0(a<0),則當(dāng)x= -b/2a時(shí),y最小(大)值=(4ac-b2)/4a.
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax2+bx+c(a≠0).
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)2+k(a≠0).
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出。
看了“2017年高中數(shù)學(xué)函數(shù)必考性質(zhì)匯總”的人還看了:
1.2017年高考數(shù)學(xué)函數(shù)的單調(diào)性必考知識(shí)點(diǎn)
2.2017年高考數(shù)學(xué)對(duì)數(shù)函數(shù)必考知識(shí)點(diǎn)
3.2017年高考數(shù)學(xué)公式總結(jié)口訣
5.2017高一數(shù)學(xué)函數(shù)的應(yīng)用知識(shí)點(diǎn)總結(jié)
6.2017年高考數(shù)學(xué)平面向量必考知識(shí)點(diǎn)