6年級下學(xué)期數(shù)學(xué)題
又到數(shù)學(xué)考試了,六年級的同學(xué)們復(fù)習(xí)好了嗎?下面是學(xué)習(xí)啦小編整理的6年級下學(xué)期數(shù)學(xué)題,供大家參閱,希望對你有幫助!
6年級下學(xué)期數(shù)學(xué)題(上)
1.把1至2005這2005個(gè)自然數(shù)依次寫下來得到一個(gè)多位數(shù)123456789.....2005,這個(gè)多位數(shù)除以9余數(shù)是多少?
解:
首先研究能被9整除的數(shù)的特點(diǎn):如果各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)也能被9整除;如果各個(gè)位數(shù)字之和不能被9整除,那么得的余數(shù)就是這個(gè)數(shù)除以9得的余數(shù)。
解題:1+2+3+4+5+6+7+8+9=45;45能被9整除
依次類推:1~1999這些數(shù)的個(gè)位上的數(shù)字之和可以被9整除
10~19,20~29……90~99這些數(shù)中十位上的數(shù)字都出現(xiàn)了10次,那么十位上的數(shù)字之和就是
10+20+30+……+90=450 它有能被9整除
同樣的道理,100~900 百位上的數(shù)字之和為4500 同樣被9整除
也就是說1~999這些連續(xù)的自然數(shù)的各個(gè)位上的數(shù)字之和可以被9整除;
同樣的道理:1000~1999這些連續(xù)的自然數(shù)中百位、十位、個(gè)位 上的數(shù)字之和可以被9整除(這里千位上的“1”還沒考慮,同時(shí)這里我們少200020012002200320042005
從1000~1999千位上一共999個(gè)“1”的和是999,也能整除;
200020012002200320042005的各位數(shù)字之和是27,也剛好整除。
最后答案為余數(shù)為0。
2.A和B是小于100的兩個(gè)非零的不同自然數(shù)。求A+B分之A-B的最小值...
解:
(A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B)
前面的 1 不會變了,只需求后面的最小值,此時(shí) (A-B)/(A+B) 最大。
對于 B / (A+B) 取最小時(shí),(A+B)/B 取最大,
問題轉(zhuǎn)化為求 (A+B)/B 的最大值。
(A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1
(A+B)/B = 100
(A-B)/(A+B) 的最大值是: 98 / 100
3.已知A.B.C都是非0自然數(shù),A/2 + B/4 + C/16的近似值市6.4,那么它的準(zhǔn)確值是多少?
答案為6.375或6.4375
因?yàn)锳/2 + B/4 + C/16=8A+4B+C/16≈6.4,
所以8A+4B+C≈102.4,由于A、B、C為非0自然數(shù),因此8A+4B+C為一個(gè)整數(shù),可能是102,也有可能是103。
當(dāng)是102時(shí),102/16=6.375
當(dāng)是103時(shí),103/16=6.4375
4.一個(gè)三位數(shù)的各位數(shù)字 之和是17.其中十位數(shù)字比個(gè)位數(shù)字大1.如果把這個(gè)三位數(shù)的百位數(shù)字與個(gè)位數(shù)字對調(diào),得到一個(gè)新的三位數(shù),則新的三位數(shù)比原三位數(shù)大198,求原數(shù).
答案為476
解:設(shè)原數(shù)個(gè)位為a,則十位為a+1,百位為16-2a
根據(jù)題意列方程100a+10a+16-2a-100(16-2a)-10a-a=198
解得a=6,則a+1=7 16-2a=4
答:原數(shù)為476。
5.一個(gè)兩位數(shù),在它的前面寫上3,所組成的三位數(shù)比原兩位數(shù)的7倍多24,求原來的兩位數(shù).
答案為24
解:設(shè)該兩位數(shù)為a,則該三位數(shù)為300+a
7a+24=300+a
a=24
答:該兩位數(shù)為24。
6.把一個(gè)兩位數(shù)的個(gè)位數(shù)字與十位數(shù)字交換后得到一個(gè)新數(shù),它與原數(shù)相加,和恰好是某自然數(shù)的平方,這個(gè)和是多少?
答案為121
解:設(shè)原兩位數(shù)為10a+b,則新兩位數(shù)為10b+a
它們的和就是10a+b+10b+a=11(a+b)
因?yàn)檫@個(gè)和是一個(gè)平方數(shù),可以確定a+b=11
因此這個(gè)和就是11×11=121
答:它們的和為121。
7.一個(gè)六位數(shù)的末位數(shù)字是2,如果把2移到首位,原數(shù)就是新數(shù)的3倍,求原數(shù).
答案為85714
解:設(shè)原六位數(shù)為abcde2,則新六位數(shù)為2abcde(字母上無法加橫線,請將整個(gè)看成一個(gè)六位數(shù)) 再設(shè)abcde(五位數(shù))為x,則原六位數(shù)就是10x+2,新六位數(shù)就是200000+x
根據(jù)題意得,(200000+x)×3=10x+2
解得x=85714
所以原數(shù)就是857142
答:原數(shù)為857142
8.有一個(gè)四位數(shù),個(gè)位數(shù)字與百位數(shù)字的和是12,十位數(shù)字與千位數(shù)字的和是9,如果個(gè)位數(shù)字與百位數(shù)字互換,千位數(shù)字與十位數(shù)字互換,新數(shù)就比原數(shù)增加2376,求原數(shù).
答案為3963
解:設(shè)原四位數(shù)為abcd,則新數(shù)為cdab,且d+b=12,a+c=9
根據(jù)“新數(shù)就比原數(shù)增加2376”可知abcd+2376=cdab,列豎式便于觀察
abcd
2376
cdab
根據(jù)d+b=12,可知d、b可能是3、9;4、8;5、7;6、6。
再觀察豎式中的個(gè)位,便可以知道只有當(dāng)d=3,b=9;或d=8,b=4時(shí)成立。
先取d=3,b=9代入豎式的百位,可以確定十位上有進(jìn)位。
根據(jù)a+c=9,可知a、c可能是1、8;2、7;3、6;4、5。
再觀察豎式中的十位,便可知只有當(dāng)c=6,a=3時(shí)成立。
再代入豎式的千位,成立。
得到:abcd=3963
再取d=8,b=4代入豎式的十位,無法找到豎式的十位合適的數(shù),所以不成立。
9.有一個(gè)兩位數(shù),如果用它去除以個(gè)位數(shù)字,商為9余數(shù)為6,如果用這個(gè)兩位數(shù)除以個(gè)位數(shù)字與十位數(shù)字之和,則商為5余數(shù)為3,求這個(gè)兩位數(shù).
解:設(shè)這個(gè)兩位數(shù)為ab
10a+b=9b+6
10a+b=5(a+b)+3
化簡得到一樣:5a+4b=3
由于a、b均為一位整數(shù)
得到a=3或7,b=3或8
原數(shù)為33或78均可以
10.如果現(xiàn)在是上午的10點(diǎn)21分,那么在經(jīng)過28799...99(一共有20個(gè)9)分鐘之后的時(shí)間將是幾點(diǎn)幾分? 答案是10:20
解:
(28799……9(20個(gè)9)+1)/60/24整除,表示正好過了整數(shù)天,時(shí)間仍然還是10:21,因?yàn)槭孪扔?jì)算時(shí)加了1分鐘,所以現(xiàn)在時(shí)間是10:20
6年級下學(xué)期數(shù)學(xué)題(中)
1.有五對夫婦圍成一圈,使每一對夫婦的夫妻二人動(dòng)相鄰的排法有( )
A 768種 B 32種 C 24種 D 2的10次方中
解:
根據(jù)乘法原理,分兩步:
第一步是把5對夫妻看作5個(gè)整體,進(jìn)行排列有5×4×3×2×1=120種不同的排法,但是因?yàn)槭菄梢粋€(gè)首尾相接的圈,就會產(chǎn)生5個(gè)5個(gè)重復(fù),因此實(shí)際排法只有120÷5=24種。
第二步每一對夫妻之間又可以相互換位置,也就是說每一對夫妻均有2種排法,總共又2×2×2×2×2=32種
綜合兩步,就有24×32=768種。
2 若把英語單詞hello的字母寫錯(cuò)了,則可能出現(xiàn)的錯(cuò)誤共有 ( )
A 119種 B 36種 C 59種 D 48種
解:
5全排列5*4*3*2*1=120
有兩個(gè)l所以120/2=60
原來有一種正確的所以60-1=59
6年級下學(xué)期數(shù)學(xué)題(下)
1. 有100種赤貧.其中含鈣的有68種,含鐵的有43種,那么,同時(shí)含鈣和鐵的食品種類的最大值和最小值分別是( )
A 43,25 B 32,25 C32,15 D 43,11
解:根據(jù)容斥原理最小值68+43-100=11
最大值就是含鐵的有43種
2.在多元智能大賽的決賽中只有三道題.已知:(1)某校25名學(xué)生參加競賽,每個(gè)學(xué)生至少解出一道題;(2)在所有沒有解出第一題的學(xué)生中,解出第二題的人數(shù)是解出第三題的人數(shù)的2倍:(3)只解出第一題的學(xué)生比余下的學(xué)生中解出第一題的人數(shù)多1人;(4)只解出一道題的學(xué)生中,有一半沒有解出第一題,那么只解出第二題的學(xué)生人數(shù)是( )
A,5 B,6 C,7 D,8
解:根據(jù)“每個(gè)人至少答出三題中的一道題”可知答題情況分為7類:只答第1題,只答第2題,只答第3題,只答第1、2題,只答第1、3題,只答2、3題,答1、2、3題。
分別設(shè)各類的人數(shù)為a1、a2、a3、a12、a13、a23、a123
由(1)知:a1+a2+a3+a12+a13+a23+a123=25…①
由(2)知:a2+a23=(a3+ a23)×2……②
由(3)知:a12+a13+a123=a1-1……③
由(4)知:a1=a2+a3……④
再由②得a23=a2-a3×2……⑤
再由③④得a12+a13+a123=a2+a3-1⑥
然后將④⑤⑥代入①中,整理得到
a2×4+a3=26
由于a2、a3均表示人數(shù),可以求出它們的整數(shù)解:
當(dāng)a2=6、5、4、3、2、1時(shí),a3=2、6、10、14、18、22
又根據(jù)a23=a2-a3×2……⑤可知:a2>a3
因此,符合條件的只有a2=6,a3=2。
然后可以推出a1=8,a12+a13+a123=7,a23=2,總?cè)藬?shù)=8+6+2+7+2=25,檢驗(yàn)所有條件均符。 故只解出第二題的學(xué)生人數(shù)a2=6人。
3.一次考試共有5道試題。做對第1、2、3、、4、5題的分別占參加考試人數(shù)的95%、80%、79%、74%、85%。如果做對三道或三道以上為合格,那么這次考試的合格率至少是多少?
答案:及格率至少為71%。
假設(shè)一共有100人考試
100-95=5
100-80=20
100-79=21
100-74=26
100-85=15
5+20+21+26+15=87(表示5題中有1題做錯(cuò)的最多人數(shù))
87÷3=29(表示5題中有3題做錯(cuò)的最多人數(shù),即不及格的人數(shù)最多為29人)
100-29=71(及格的最少人數(shù),其實(shí)都是全對的)
及格率至少為71%