18禁网站免费,成年人黄色视频网站,熟妇高潮一区二区在线播放,国产精品高潮呻吟AV

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高二學(xué)習(xí)方法 > 高二數(shù)學(xué) >

高二數(shù)學(xué)單元的知識點(diǎn)概括

時(shí)間: 贊銳20 分享

只要有正確的學(xué)習(xí)方法,不管有沒有先天的優(yōu)勢,我們都可以成功的!有很多高中同學(xué)曾問過我,為什么自己努力了,成績還是上不去,自己每天都在加班加點(diǎn)的學(xué)習(xí),成績一直都不能提高。以下是小編給大家整理的高二數(shù)學(xué)單元的知識點(diǎn)概括,希望大家能夠喜歡!

高二數(shù)學(xué)單元的知識點(diǎn)概括1

1.求函數(shù)的單調(diào)性:

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本方法:設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),(1)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù);(2)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù);(3)如果恒f(x)0,則函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù)。

利用導(dǎo)數(shù)求函數(shù)單調(diào)性的基本步驟:①求函數(shù)yf(x)的定義域;②求導(dǎo)數(shù)f(x);③解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為增區(qū)間;④解不等式f(x)0,解集在定義域內(nèi)的不間斷區(qū)間為減區(qū)間。

反過來,也可以利用導(dǎo)數(shù)由函數(shù)的單調(diào)性解決相關(guān)問題(如確定參數(shù)的取值范圍):設(shè)函數(shù)yf(x)在區(qū)間(a,b)內(nèi)可導(dǎo),

(1)如果函數(shù)yf(x)在區(qū)間(a,b)上為增函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(2)如果函數(shù)yf(x)在區(qū)間(a,b)上為減函數(shù),則f(x)0(其中使f(x)0的x值不構(gòu)成區(qū)間);

(3)如果函數(shù)yf(x)在區(qū)間(a,b)上為常數(shù)函數(shù),則f(x)0恒成立。

2.求函數(shù)的極值:

設(shè)函數(shù)yf(x)在x0及其附近有定義,如果對x0附近的所有的點(diǎn)都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函數(shù)f(x)的極小值(或極大值)。

可導(dǎo)函數(shù)的極值,可通過研究函數(shù)的單調(diào)性求得,基本步驟是:

(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f(x);(3)求方程f(x)0的全部實(shí)根,x1x2xn,順次將定義域分成若干個小區(qū)間,并列表:x變化時(shí),f(x)和f(x)值的變化情況:

(4)檢查f(x)的符號并由表格判斷極值。

3.求函數(shù)的值與最小值:

如果函數(shù)f(x)在定義域I內(nèi)存在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函數(shù)在定義域上的值。函數(shù)在定義域內(nèi)的極值不一定,但在定義域內(nèi)的最值是的。

求函數(shù)f(x)在區(qū)間[a,b]上的值和最小值的步驟:(1)求f(x)在區(qū)間(a,b)上的極值;

(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區(qū)間[a,b]上的值與最小值。

4.解決不等式的有關(guān)問題:

(1)不等式恒成立問題(絕對不等式問題)可考慮值域。

f(x)(xA)的值域是[a,b]時(shí),

不等式f(x)0恒成立的充要條件是f(x)max0,即b0;

不等式f(x)0恒成立的充要條件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)時(shí),

不等式f(x)0恒成立的充要條件是b0;不等式f(x)0恒成立的充要條件是a0。

(2)證明不等式f(x)0可轉(zhuǎn)化為證明f(x)max0,或利用函數(shù)f(x)的單調(diào)性,轉(zhuǎn)化為證明f(x)f(x0)0。

5.導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用:

實(shí)際生活求解(小)值問題,通常都可轉(zhuǎn)化為函數(shù)的最值.在利用導(dǎo)數(shù)來求函數(shù)最值時(shí),一定要注意,極值點(diǎn)的單峰函數(shù),極值點(diǎn)就是最值點(diǎn),在解題時(shí)要加以說明。

高二數(shù)學(xué)單元的知識點(diǎn)概括2

1.拋物線是軸對稱圖形。對稱軸為直線

x=-b/2a。

對稱軸與拋物線的交點(diǎn)為拋物線的頂點(diǎn)P。

特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點(diǎn)P,坐標(biāo)為

P(-b/2a,(4ac-b^2)/4a)

當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。

當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左;

當(dāng)a與b異號時(shí)(即ab<0),對稱軸在y軸右。

5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

拋物線與y軸交于(0,c)

6.拋物線與x軸交點(diǎn)個數(shù)

Δ=b^2-4ac>0時(shí),拋物線與x軸有2個交點(diǎn)。

Δ=b^2-4ac=0時(shí),拋物線與x軸有1個交點(diǎn)。

Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)

高二數(shù)學(xué)單元的知識點(diǎn)概括3

有界性

設(shè)函數(shù)f(x)在區(qū)間X上有定義,如果存在M>0,對于一切屬于區(qū)間X上的x,恒有|f(x)|≤M,則稱f(x)在區(qū)間X上有界,否則稱f(x)在區(qū)間上無界。

單調(diào)性

設(shè)函數(shù)f(x)的定義域?yàn)镈,區(qū)間I包含于D。如果對于區(qū)間上任意兩點(diǎn)x1及x2,當(dāng)x1f(x2),則稱函數(shù)f(x)在區(qū)間I上是單調(diào)遞減的。單調(diào)遞增和單調(diào)遞減的函數(shù)統(tǒng)稱為單調(diào)函數(shù)。

奇偶性

設(shè)為一個實(shí)變量實(shí)值函數(shù),若有f(-x)=-f(x),則f(x)為奇函數(shù)。

幾何上,一個奇函數(shù)關(guān)于原點(diǎn)對稱,亦即其圖像在繞原點(diǎn)做180度旋轉(zhuǎn)后不會改變。

奇函數(shù)的例子有x、sin(x)、sinh(x)和erf(x)。

設(shè)f(x)為一實(shí)變量實(shí)值函數(shù),若有f(x)=f(-x),則f(x)為偶函數(shù)。

幾何上,一個偶函數(shù)關(guān)于y軸對稱,亦即其圖在對y軸映射后不會改變。

偶函數(shù)的例子有|x|、x2、cos(x)和cosh(x)。

偶函數(shù)不可能是個雙射映射。

連續(xù)性

在數(shù)學(xué)中,連續(xù)是函數(shù)的一種屬性。直觀上來說,連續(xù)的函數(shù)就是當(dāng)輸入值的變化足夠小的時(shí)候,輸出的變化也會隨之足夠小的函數(shù)。如果輸入值的某種微小的變化會產(chǎn)生輸出值的一個突然的跳躍甚至無法定義,則這個函數(shù)被稱為是不連續(xù)的函數(shù)(或者說具有不連續(xù)性)。


高二數(shù)學(xué)單元的知識點(diǎn)概括相關(guān)文章:

高二數(shù)學(xué)知識點(diǎn)總結(jié)

高二數(shù)學(xué)知識點(diǎn)最新歸納

高二數(shù)學(xué)知識點(diǎn)全總結(jié)

高二數(shù)學(xué)知識點(diǎn)歸納總結(jié)

高二數(shù)學(xué)考點(diǎn)知識點(diǎn)總結(jié)復(fù)習(xí)大綱

高二數(shù)學(xué)知識點(diǎn)總結(jié)歸納

高二數(shù)學(xué)上下學(xué)期知識點(diǎn)復(fù)習(xí)提綱

高二數(shù)學(xué)復(fù)習(xí)必背知識點(diǎn)歸納

高二數(shù)學(xué)重要知識點(diǎn)歸納

高二數(shù)學(xué)知識點(diǎn)總結(jié)詳細(xì)

1070887