18禁网站免费,成年人黄色视频网站,熟妇高潮一区二区在线播放,国产精品高潮呻吟AV

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高一學(xué)習(xí)方法 > 高一數(shù)學(xué) >

高一數(shù)學(xué)公式必修一整理

時(shí)間: 維維20 分享

為了成功地生活,少年人必須學(xué)習(xí)自立,鏟除埋伏各處的障礙,在家庭要教養(yǎng)他,使他具有為人所認(rèn)可的獨(dú)立人格。下面給大家分享一些關(guān)于高一數(shù)學(xué)公式必修一整理,希望對(duì)大家有所幫助。

第一章集合與函數(shù)概念

一、集合有關(guān)概念

1. 集合的含義(研究對(duì)象的全體)

2. 集合的中元素的三個(gè)特性:

(1) 元素的確定性,互異性,無(wú)序性

3.集合的表示:用一個(gè)大寫(xiě)字母表示,列舉法,描述法,自然語(yǔ)言法,區(qū)間法,韋恩圖法 (Venn圖)

非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

正整數(shù)集 N-或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R 復(fù)數(shù)集C

4、集合的分類(lèi):

(1) 有限集 含有有限個(gè)元素的集合(2) 無(wú)限集 含有無(wú)限個(gè)元素的集合(3) 空集 不含任何元素的集合

二、集合間的基本關(guān)系

包含,包含于A?B,真包含,真包含于,等于=

3. 不含任何元素的集合叫做空集,記為Φ

規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

有n個(gè)元素的集合其子集有2n個(gè),真子集有2n-1個(gè)

三、集合的運(yùn)算

并(全要),交(重合),補(bǔ)(剩余)

第二章、函數(shù)的有關(guān)概念

1.函數(shù)的概念:非空、數(shù)集、x的全體、y的唯一。x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合叫做函數(shù)的值域是B的子集.

定義域:1式子有意義的條件

(1)分母不等于零;

(2)偶次方根的被開(kāi)方數(shù)大于等于零;

(3)對(duì)數(shù)式的真數(shù)大于零;

(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

(5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

(6)零次冪底數(shù)不為0

2生活實(shí)際

3抽象函數(shù)定義域的求法(由定義域求房間范圍,再由房間范圍求定義域)

2.值域 : 觀察法,幾何法,公式法,圖像法,不等式法,導(dǎo)數(shù)法,

3. 函數(shù)圖象知識(shí)歸納

畫(huà)法

A、 描點(diǎn)法:

B、 圖象變換法

常用變換方法有三種

1) 平移變換

2) 伸縮變換

3) 對(duì)稱(chēng)變換

4.區(qū)間的概念

(1)區(qū)間的分類(lèi):開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間

(2)無(wú)窮區(qū)間

(3)區(qū)間的數(shù)軸表示.

5.分段函數(shù)

(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

(2)各部分的自變量的取值情況.

(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

補(bǔ)充:復(fù)合函數(shù)(同增異減,定義域取交集)

二.函數(shù)的性質(zhì)

1.函數(shù)的單調(diào)性(局部性質(zhì))

(1)增函數(shù)

設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱(chēng)為y=f(x)的單調(diào)減區(qū)間.

注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

(2) 圖象的特點(diǎn)

如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

(A) 定義法:

1 任取x1,x2∈D,且x1

2 作差f(x1)-f(x2);

3 變形(通常是因式分解和配方);

4 定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));

5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

(B)圖象法(從圖象上看升降)

(C)復(fù)合函數(shù)的單調(diào)性

復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集.

8.函數(shù)的奇偶性(整體性質(zhì))

(1)偶函數(shù)

一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

(2).奇函數(shù)

一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

(3)具有奇偶性的函數(shù)的圖象的特征

偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).

利用定義判斷函數(shù)奇偶性的步驟:

1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱(chēng);

2確定f(-x)與f(x)的關(guān)系;

3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

注意:函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱(chēng)是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱(chēng),若不對(duì)稱(chēng)則函數(shù)是非奇非偶函數(shù).若對(duì)稱(chēng),(1)再根據(jù)定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定; (3)利用定理,或借助函數(shù)的圖象判定 .

9、函數(shù)的解析表達(dá)式

(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

(2)求函數(shù)的解析式的主要方法有:

1) 湊配法

2) 待定系數(shù)法

3) 換元法

4) 消參法

10.函數(shù)最大(小)值(定義見(jiàn)課本p36頁(yè))

1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

2 利用圖象求函數(shù)的最大(小)值

3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);

如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);

第三章函數(shù)的應(yīng)用

一、方程的根與函數(shù)的零點(diǎn)

1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。

即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

3、函數(shù)零點(diǎn)的求法:

1 (代數(shù)法)求方程的實(shí)數(shù)根;

2 (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).

4、二次函數(shù)的零點(diǎn):

二次函數(shù).

(1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

(2)△=0,方程有兩相等實(shí)根,二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

(3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

5.函數(shù)的模型


高一數(shù)學(xué)公式必修一整理相關(guān)文章:

高一數(shù)學(xué)必修一公式大全

高一數(shù)學(xué)公式總結(jié)(必修一)

高一數(shù)學(xué)必修一集合公式知識(shí)點(diǎn)與學(xué)習(xí)方法

高一數(shù)學(xué)公式必修一

高中數(shù)學(xué)必修一知識(shí)點(diǎn)框架圖

人教版高中數(shù)學(xué)必修一知識(shí)點(diǎn)規(guī)納數(shù)學(xué)公式

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)歸納

高一數(shù)學(xué)必修1知識(shí)點(diǎn)歸納

高一數(shù)學(xué)必修一知識(shí)點(diǎn)匯總

高一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)【必修一】

686429