人教版初二數學上冊期末測試卷
人教版初二數學上冊期末測試卷
十年寒窗今破壁,錦繡前程自此辟。揮毫煙云落筆疾,馬到成功身名立!祝你八年級數學期末考試取得好成績,期待你的成功!下面是學習啦小編為大家精心推薦的人教版初二數學上冊期末測試卷,希望能夠對您有所幫助。
人教版初二數學上冊期末測試題
一、選擇題(共12小題,每小題3分,滿分36分)
1.要使分式 有意義,x的取值范圍滿足( )
A.x=0 B.x≠0 C.x>0 D.x<0
2.下列各式中能用平方差公式是( )
A.(x+y)(y+x) B.(x+y)(y﹣x) C.(x+y)(﹣y﹣x) D.(﹣x+y)(y﹣x)
3.下列計算結果正確的是( )
A.x•x2=x2 B.(x5)3=x8 C.(ab)3=a3b3 D.a6÷a2=a3
4.下列長度的三條線段,哪一組不能構成三角形( )
A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9
5.如圖,CD,CE,CF分別是△ABC的高、角平分線、中線,則下列各式中錯誤的是( )
A.AB=2BF B.∠ACE= ∠ACB C.AE=BE D.CD⊥BE
6.如圖,將兩根等長鋼條AA′、BB′的中點O連在一起,使AA′、BB′可以繞著點O自由轉動,就做成了一個測量工件,則AB的長等于容器內徑A′B′,那么判定△OAB≌△OA′B′的理由是( )
A.邊邊邊 B.邊角邊 C.角邊角 D.角角邊
7.下列計算正確的是( )
A.32=6 B.3﹣1=﹣3 C.30=0 D.3﹣1=
8.已知y2+10y+m是完全平方式,則m的值是( )
A.25 B.±25 C.5 D.±5
9.如圖,△ABC中,AB=AC,∠A=36°,AB的垂直平分線DE交AC于D,交AB于E,則∠BDC的度數為( )
A.72° B.36° C.60° D.82°
10.在△ABC中,AD是∠BAC的平分線,且AB=AC+CD,若∠BAC=75°,則∠ABC的大小為( )
A.25° B.35° C.37.5° D.45°
11.若分式 ,則分式 的值等于( )
A.﹣ B. C.﹣ D.
12.若x2+cx+6=(x+a)(x+b),其中a,b,c為整數,則c的取值有( )
A.1個 B.2個 C.4個 D.8個
二、填空題(共7小題,每小題4分,滿分28分)
13.計算3a2b3•(﹣2ab)2= .
14.分解因式:a2b﹣b3= .
15.如圖,∠AOP=∠BOP=15°,PC∥OA,PQ⊥OA,若PC=4,則PQ= .
16.如圖,將一張長方形紙片折疊成如圖所示的形態(tài),∠CBD=40°,則∠ABC= .
17.如圖,點E為等邊△ABC中AC邊的中點,AD⊥BC,且AD=5,P為AD上的動點,則PE+PC的最小值為 .
18.若關于x的分式方程 無解,則m的值是 .
19.如圖,在等邊△ABC中,AC=3,點O在AC上,且AO=1.點P是AB上一點,連接OP,以線段OP為一邊作正△OPD,且O、P、D三點依次呈逆時針方向,當點D恰好落在邊BC上時,則AP的長是 .
三、解答題(共5小題,滿分56分)
20.解答下列各題:
(1)分解因式:4a2﹣8ab+4b2﹣16c2
(2)計算:(2a+b)(2a﹣b)+b(2a+b)﹣8a2b÷2b
(3)化簡求值:( ﹣ )÷ ,其中x=﹣3
(4)解分式方程: ﹣1= .
21.如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,BE⊥AE,延長AE交BC的延長線于點F.求證:
(1)FC=AD;
(2)AB=BC+AD.
22.如圖:已知等邊△ABC中,D是AC的中點,E是BC延長線上的一點,且CE=CD,DM⊥BC,垂足為M,求證:M是BE的中點.
23.從2014年春季開始,我縣農村實行垃圾分類集中處理,對農村環(huán)境進行綜合整治,靚化了我們的家園.現在某村要清理一個衛(wèi)生死角內的垃圾,若用甲、乙兩車運送,兩車各運15趟可完成,已知甲、乙兩車單獨運完此堆垃圾,乙車所運趟數是甲車的3倍,求甲、乙兩車單獨運完此堆垃圾各需運多少趟?
24.常用的分解因式的方法有提取公因式法、公式法及到了高中還要學習的十字相乘法,但有更多的多項式只用上述方法就無法分解,x2﹣4y2﹣2x+4y,我們細心觀察這個式子就會發(fā)現,前兩項符合平方差公式,后兩項可提取公因式,前后兩部分分別分解因式后會產生公因式,然后提取公因式就可以完成整個式子的分解因式了.過程為:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2)這種分解因式的方法叫分組分解法.利用這種方法解決下列問題:
(1)分解因式:a2﹣4a﹣b2+4;
(2)△ABC三邊a,b,c滿足a2﹣ab﹣ac+bc=0,判斷△ABC的形狀.
人教版初二數學上冊期末測試卷參考答案
一、選擇題(共12小題,每小題3分,滿分36分)
1.要使分式 有意義,x的取值范圍滿足( )
A.x=0 B.x≠0 C.x>0 D.x<0
【分析】根據分母不等于0,列式即可得解.
【解答】解:根據題意得,x≠0.
故選B.
【點評】本題考查了分式有意義的條件,從以下三個方面透徹理解分式的概念:
(1)分式無意義⇔分母為零;
(2)分式有意義⇔分母不為零;
(3)分式值為零⇔分子為零且分母不為零.
2.下列各式中能用平方差公式是( )
A.(x+y)(y+x) B.(x+y)(y﹣x) C.(x+y)(﹣y﹣x) D.(﹣x+y)(y﹣x)
【分析】利用平方差公式的結構特征判斷即可得到結果.
【解答】解:能用平方差公式是(x+y)(y﹣x)=y2﹣x2,
故選B
【點評】此題考查了平方差公式,熟練掌握公式是解本題的關鍵.
3.下列計算結果正確的是( )
A.x•x2=x2 B.(x5)3=x8 C.(ab)3=a3b3 D.a6÷a2=a3
【分析】根據同底數冪的除法,底數不變指數相減;同底數冪的乘法,底數不變指數相加;冪的乘方,底數不變指數相乘,對各選項計算后利用排除法求解.
【解答】解:A、x•x2=x2同底數冪的乘法,底數不變指數相加,故本選項錯誤;
B、(x5)3=x15,冪的乘方,底數不變指數相乘,故本選項錯誤.
C、(ab)3=a3b3,故本選項正確;
D、a6÷a2=a3同底數冪的除法,底數不變指數相減,故本選項錯誤.
故選C.
【點評】本題考查同底數冪的除法,積的乘方,同底數冪的乘法,冪的乘方很容易混淆,一定要記準法則才能做題.
4.下列長度的三條線段,哪一組不能構成三角形( )
A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,9
【分析】先回顧一下三角形的三邊關系定理,根據判定定理逐個判斷即可.
【解答】解:A、3+3>3,符合三角形的三邊關系定理,故本選項錯誤;
B,3+4>5,3+5>4,5+4>3,符合三角形的三邊關系定理,故本選項錯誤;
C、5+6>10,5+10>6,6+10>5,符合三角形的三邊關系定理,故本選項錯誤;
D、4+5=9,不符合三角形的三邊關系定理,故本選項正確;
故選D.
【點評】本題考查了三角形的三邊關系定理的應用,主要考查學生的理解能力和辨析能力,注意:三角形的任意兩邊之和大于第三邊,三角形的兩邊之差小于第三邊.
5.如圖,CD,CE,CF分別是△ABC的高、角平分線、中線,則下列各式中錯誤的是( )
A.AB=2BF B.∠ACE= ∠ACB C.AE=BE D.CD⊥BE
【分析】從三角形的一個頂點向底邊作垂線,垂足與頂點之間的線段叫做三角形的高.
三角形一個內角的平分線與這個內角的對邊交于一點,則這個內角的頂點與所交的點間的線段叫做三角形的角平分線.
三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線.依此即可求解.
【解答】解:∵CD,CE,CF分別是△ABC的高、角平分線、中線,
∴CD⊥BE,∠ACE= ∠ACB,AB=2BF,無法確定AE=BE.
故選C.
【點評】考查了三角形的角平分線、中線和高,根據是熟悉它們的定義和性質.
6.如圖,將兩根等長鋼條AA′、BB′的中點O連在一起,使AA′、BB′可以繞著點O自由轉動,就做成了一個測量工件,則AB的長等于容器內徑A′B′,那么判定△OAB≌△OA′B′的理由是( )
A.邊邊邊 B.邊角邊 C.角邊角 D.角角邊
【分析】根據全等三角形的判定方法解答即可.
【解答】解:∵AA′、BB′的中點O連在一起,
∴OA=OA′,OB=OB′,
又∵∠AOB=∠A′OB′,
∴△OAB≌△OA′B′的理由是“邊角邊”.
故選B.
【點評】本題考查了全等三角形的應用,熟練掌握三角形全等的判定方法是解題的關鍵.
7.下列計算正確的是( )
A.32=6 B.3﹣1=﹣3 C.30=0 D.3﹣1=
【分析】根據乘方的意義判斷A;根據負整數指數冪的意義判斷B;根據零指數冪的意義判斷C;根據負整數指數冪的意義判斷D.
【解答】解:A、32=9,故本選項錯誤;
B、3﹣1= ,故本選項錯誤;
C、30=1,故本選項錯誤;
D、3﹣1= ,故本選項正確;
故選D.
【點評】本題考查了乘方的意義,負整數指數冪的意義,零指數冪的意義,是基礎知識,需熟練掌握.
8.已知y2+10y+m是完全平方式,則m的值是( )
A.25 B.±25 C.5 D.±5
【分析】直接利用完全平方公式求出m的值.
【解答】解:∵y2+10y+m是完全平方式,
∴y2+10y+m=(y+5)2=y2+10y+25,
故m=25.
故選:A.
【點評】此題主要考查了完全平方公式,熟練應用完全平方公式是解題關鍵.
9.如圖,△ABC中,AB=AC,∠A=36°,AB的垂直平分線DE交AC于D,交AB于E,則∠BDC的度數為( )
A.72° B.36° C.60° D.82°
【分析】先根據AB=AC,∠A=36°求出∠ABC及∠C的度數,再由垂直平分線的性質求出∠ABD的度數,再由三角形內角與外角的性質解答即可.
【解答】解:∵AB=AC,∠A=36°,
∴∠ABC=∠C= = =72°,
∵DE垂直平分AB,
∴∠A=∠ABD=36°,
∴∠BDC=∠A+∠ABD=36°+36°=72°.
故選A.
【點評】本題考查的是線段垂直平分線的性質及三角形內角和定理、等腰三角形的性質,解答此題的關鍵是熟知線段垂直平分線的性質,即線段的垂直平分線上的點到線段的兩個端點的距離相等.
10.在△ABC中,AD是∠BAC的平分線,且AB=AC+CD,若∠BAC=75°,則∠ABC的大小為( )
A.25° B.35° C.37.5° D.45°
【分析】可在AB上取AC′=AC,則由題中條件可得BC′=C′D,即∠C=∠AC′D=2∠B,再由三角形的內角和即可求解∠B的大小.
【解答】解:在AB上取AC′=AC,
在△ACD和△AC′D中,
,
∴△ACD≌△AC′D(SAS),
又∵AB=AC+CD,得AB=AC′+C′D,
∴BC′=C′D,
∴∠C=∠AC'D=2∠B,
又∵∠B+∠C=180°﹣∠BAC=105°,
∴∠B=35°.
故選B.
【點評】本題主要考查了全等三角形的判定及性質問題,熟記相似三角形的判定和巧作輔助線是解題的關鍵.
11.若分式 ,則分式 的值等于( )
A.﹣ B. C.﹣ D.
【分析】根據已知條件,將分式 整理為y﹣x=2xy,再代入則分式 中求值即可.