18禁网站免费,成年人黄色视频网站,熟妇高潮一区二区在线播放,国产精品高潮呻吟AV

學習啦 > 學習方法 > 高中學習方法 > 高三學習方法 > 高三數學 >

高三數學重要溫習的知識點分析

時間: 贊銳20 分享

數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環(huán)境中得到培養(yǎng)的。以下是小編給大家整理的高三數學重要溫習的知識點分析,希望大家能夠喜歡!

高三數學重要溫習的知識點分析1

1.數列的定義、分類與通項公式

(1)數列的定義:

①數列:按照一定順序排列的一列數.

②數列的項:數列中的每一個數.

(2)數列的分類:

分類標準類型滿足條件

項數有窮數列項數有限

無窮數列項數無限

項與項間的大小關系遞增數列an+1>an其中n∈N_

遞減數列an+1<an< p="">

常數列an+1=an

(3)數列的通項公式:

如果數列{an}的第n項與序號n之間的關系可以用一個式子來表示,那么這個公式叫做這個數列的通項公式.

2.數列的遞推公式

如果已知數列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關系可用一個公式來表示,那么這個公式叫數列的遞推公式.

3.對數列概念的理解

(1)數列是按一定“順序”排列的一列數,一個數列不僅與構成它的“數”有關,而且還與這些“數”的排列順序有關,這有別于集合中元素的無序性.因此,若組成兩個數列的數相同而排列次序不同,那么它們就是不同的兩個數列.

(2)數列中的數可以重復出現,而集合中的元素不能重復出現,這也是數列與數集的區(qū)別.

4.數列的函數特征

數列是一個定義域為正整數集N_(或它的有限子集{1,2,3,…,n})的特殊函數,數列的通項公式也就是相應的函數解析式,即f(n)=an(n∈N_).

高三數學重要溫習的知識點分析2

1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進行求解.

2.在應用條件時,易A忽略是空集的情況

3.你會用補集的思想解決有關問題嗎?

4.簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?

5.你知道“否命題”與“命題的否定形式”的區(qū)別.

6.求解與函數有關的問題易忽略定義域優(yōu)先的原則.

7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關于原點對稱.

8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.

9.原函數在區(qū)間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調

10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值,作差,判正負)和導數法

11.求函數單調性時,易錯誤地在多個單調區(qū)間之間添加符號“∪”和“或”;單調區(qū)間不能用集合或不等式表示.

12.求函數的值域必須先求函數的定義域。

13.如何應用函數的單調性與奇偶性解題?①比較函數值的大小;②解抽象函數不等式;③求參數的范圍(恒成立問題).這幾種基本應用你掌握了嗎?

14.解對數函數問題時,你注意到真數與底數的限制條件了嗎?

(真數大于零,底數大于零且不等于1)字母底數還需討論

15.三個二次(哪三個二次?)的關系及應用掌握了嗎?如何利用二次函數求最值?

16.用換元法解題時易忽略換元前后的等價性,易忽略參數的范圍。

17.“實系數一元二次方程有實數解”轉化時,你是否注意到:當時,“方程有解”不能轉化為。若原題中沒有指出是二次方程,二次函數或二次不等式,你是否考慮到二次項系數可能為的零的情形?

18.利用均值不等式求最值時,你是否注意到:“一正;二定;三等”.

19.絕對值不等式的解法及其幾何意義是什么?

20.解分式不等式應注意什么問題?用“根軸法”解整式(分式)不等式的注意事項是什么?

21.解含參數不等式的通法是“定義域為前提,函數的單調性為基礎,分類討論是關鍵”,注意解完之后要寫上:“綜上,原不等式的解集是……”.

22.在求不等式的解集、定義域及值域時,其結果一定要用集合或區(qū)間表示;不能用不等式表示.

23.兩個不等式相乘時,必須注意同向同正時才能相乘,即同向同正可乘;同時要注意“同號可倒”即a>b>0,a<0.

24.解決一些等比數列的前項和問題,你注意到要對公比及兩種情況進行討論了嗎?

25.在“已知,求”的問題中,你在利用公式時注意到了嗎?(時,應有)需要驗證,有些題目通項是分段函數。

26.你知道存在的條件嗎?(你理解數列、有窮數列、無窮數列的概念嗎?你知道無窮數列的前項和與所有項的和的不同嗎?什么樣的無窮等比數列的所有項的和必定存在?

27.數列單調性問題能否等同于對應函數的單調性問題?(數列是特殊函數,但其定義域中的值不是連續(xù)的。)

28.應用數學歸納法一要注意步驟齊全,二要注意從到過程中,先假設時成立,再結合一些數學方法用來證明時也成立。

29.正角、負角、零角、象限角的概念你清楚嗎?,若角的終邊在坐標軸上,那它歸哪個象限呢?你知道銳角與第一象限的角;終邊相同的角和相等的角的區(qū)別嗎?

30.三角函數的定義及單位圓內的三角函數線(正弦線、余弦線、正切線)的定義你知道嗎?

31.在解三角問題時,你注意到正切函數、余切函數的定義域了嗎?你注意到正弦函數、余弦函數的有界性了嗎?

32.你還記得三角化簡的通性通法嗎?(切割化弦、降冪公式、用三角公式轉化出現特殊角.異角化同角,異名化同名,高次化低次)

33.反正弦、反余弦、反正切函數的取值范圍分別是

34.你還記得某些特殊角的三角函數值嗎?

35.掌握正弦函數、余弦函數及正切函數的圖象和性質.你會寫三角函數的單調區(qū)間嗎?會寫簡單的三角不等式的解集嗎?(要注意數形結合與書寫規(guī)范,可別忘了),你是否清楚函數的圖象可以由函數經過怎樣的變換得到嗎?

36.函數的圖象的平移,方程的平移以及點的平移公式易混:

(1)函數的圖象的平移為“左+右-,上+下-”;如函數的圖象左移2個單位且下移3個單位得到的圖象的解析式為y=2(x+2)+4-3,即y=2x+5.

(2)方程表示的圖形的平移為“左+右-,上-下+”;如直線左移2個個單位且下移3個單位得到的圖象的解析式為2(x+2)-(y+3)+4=0,即y=2x+5.

(3)點的平移公式:點P(x,y)按向量平移到點P(x,y),則x=x+hy=y+k.

37.在三角函數中求一個角時,注意考慮兩方面了嗎?(先求出某一個三角函數值,再判定角的范圍)

38.形如的周期都是,但的周期為。

39.正弦定理時易忘比值還等于2R。

高三數學重要溫習的知識點分析3

a(1)=a,a(n)為公差為r的等差數列

通項公式:

a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.

可用歸納法證明。

n=1時,a(1)=a+(1-1)r=a。成立。

假設n=k時,等差數列的通項公式成立。a(k)=a+(k-1)r

則,n=k+1時,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.

通項公式也成立。

因此,由歸納法知,等差數列的通項公式是正確的。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+(a+r)+...+[a+(n-1)r]

=na+r[1+2+...+(n-1)]

=na+n(n-1)r/2

同樣,可用歸納法證明求和公式。

a(1)=a,a(n)為公比為r(r不等于0)的等比數列

通項公式:

a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).

可用歸納法證明等比數列的通項公式。

求和公式:

S(n)=a(1)+a(2)+...+a(n)

=a+ar+...+ar^(n-1)

=a[1+r+...+r^(n-1)]

r不等于1時,

S(n)=a[1-r^n]/[1-r]

r=1時,

S(n)=na.

同樣,可用歸納法證明求和公式。


高三數學重要溫習的知識點分析相關文章:

高考數學復習要點及策略

2020屆高三數學一輪復習策略分享與得分技巧

高三數學的提分技巧

高三數學復習技巧

高三生不得不看的數序高效復習方法大全

2020沖刺高三數學的方法總結

高三數學一輪復習的方法

天津高考數學一輪復習三大階段

高三數學一輪復習計劃

高三復習計劃總結

1071054